Why is this recursive code so slow? Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What are the hidden specifications for FindRootWhy does this function inside FindRoot fail to evaluate?Very slow mathematica finite differencesUsing Mathematica to solve a recursive system of differential equationsImproving the speed on an iterated differential systemForward iterations of coupled recursion equationsManipulate+FindRoot+Plot3D very slow/crashAttacking a “Mathematica can't solve” problemErrors using FindRoot on slow numerical functionAvoiding a for loop to create a list

Why are the trig functions versine, haversine, exsecant, etc, rarely used in modern mathematics?

How to react to hostile behavior from a senior developer?

Generate an RGB colour grid

Do jazz musicians improvise on the parent scale in addition to the chord-scales?

Do I really need recursive chmod to restrict access to a folder?

How to Make a Beautiful Stacked 3D Plot

If a VARCHAR(MAX) column is included in an index, is the entire value always stored in the index page(s)?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

How to find all the available tools in mac terminal?

An adverb for when you're not exaggerating

How come Sam didn't become Lord of Horn Hill?

How to compare two different files line by line in unix?

Should I use a zero-interest credit card for a large one-time purchase?

Is grep documentation wrong?

Is it cost-effective to upgrade an old-ish Giant Escape R3 commuter bike with entry-level branded parts (wheels, drivetrain)?

How do I stop a creek from eroding my steep embankment?

Trademark violation for app?

Why wasn't DOSKEY integrated with COMMAND.COM?

When the Haste spell ends on a creature, do attackers have advantage against that creature?

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

Can a party unilaterally change candidates in preparation for a General election?

Do square wave exist?

Why do we bend a book to keep it straight?

Using et al. for a last / senior author rather than for a first author



Why is this recursive code so slow?



Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?What are the hidden specifications for FindRootWhy does this function inside FindRoot fail to evaluate?Very slow mathematica finite differencesUsing Mathematica to solve a recursive system of differential equationsImproving the speed on an iterated differential systemForward iterations of coupled recursion equationsManipulate+FindRoot+Plot3D very slow/crashAttacking a “Mathematica can't solve” problemErrors using FindRoot on slow numerical functionAvoiding a for loop to create a list










5












$begingroup$


This code for the first five iterations the speed is okay, but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1

A[r_] := A[r] =
Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s <= r <= 2.5 s, r - s -
24*e*s^-1, r < s]
For[i = 2, i < 101,
i++, u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , x, 1.]; Print[u[i]]]









share|improve this question











$endgroup$











  • $begingroup$
    How slow? How many minutes/seconds?
    $endgroup$
    – JonyD
    Apr 12 at 8:28















5












$begingroup$


This code for the first five iterations the speed is okay, but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1

A[r_] := A[r] =
Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s <= r <= 2.5 s, r - s -
24*e*s^-1, r < s]
For[i = 2, i < 101,
i++, u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , x, 1.]; Print[u[i]]]









share|improve this question











$endgroup$











  • $begingroup$
    How slow? How many minutes/seconds?
    $endgroup$
    – JonyD
    Apr 12 at 8:28













5












5








5





$begingroup$


This code for the first five iterations the speed is okay, but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1

A[r_] := A[r] =
Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s <= r <= 2.5 s, r - s -
24*e*s^-1, r < s]
For[i = 2, i < 101,
i++, u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , x, 1.]; Print[u[i]]]









share|improve this question











$endgroup$




This code for the first five iterations the speed is okay, but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1

A[r_] := A[r] =
Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s <= r <= 2.5 s, r - s -
24*e*s^-1, r < s]
For[i = 2, i < 101,
i++, u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , x, 1.]; Print[u[i]]]






equation-solving recursion






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 12 at 8:27









Roman

5,56111131




5,56111131










asked Apr 12 at 4:08









morapimorapi

355




355











  • $begingroup$
    How slow? How many minutes/seconds?
    $endgroup$
    – JonyD
    Apr 12 at 8:28
















  • $begingroup$
    How slow? How many minutes/seconds?
    $endgroup$
    – JonyD
    Apr 12 at 8:28















$begingroup$
How slow? How many minutes/seconds?
$endgroup$
– JonyD
Apr 12 at 8:28




$begingroup$
How slow? How many minutes/seconds?
$endgroup$
– JonyD
Apr 12 at 8:28










1 Answer
1






active

oldest

votes


















12












$begingroup$

I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;

A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
r - s - 24*e*s^-1, r < s];

u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

Array[u, 100]



0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675




(takes about 1.3 seconds)



Alternatively, use



Table[u[i], i, 1, 100]


(same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






share|improve this answer











$endgroup$












  • $begingroup$
    thank you very much. I really appreciate it.
    $endgroup$
    – morapi
    Apr 12 at 6:35






  • 1




    $begingroup$
    delayed assignments definitely sound slower than immediate, even if I have never worked with Mathematica
    $endgroup$
    – Roland
    Apr 12 at 10:07







  • 2




    $begingroup$
    @Roland it's not just that one is necessarily faster or slower than the other, it's more that they are completely different things with very different applications. For some reason this point is often overlooked by beginners in Mathematica.
    $endgroup$
    – Roman
    Apr 12 at 10:14











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-recursive-code-so-slow%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









12












$begingroup$

I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;

A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
r - s - 24*e*s^-1, r < s];

u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

Array[u, 100]



0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675




(takes about 1.3 seconds)



Alternatively, use



Table[u[i], i, 1, 100]


(same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






share|improve this answer











$endgroup$












  • $begingroup$
    thank you very much. I really appreciate it.
    $endgroup$
    – morapi
    Apr 12 at 6:35






  • 1




    $begingroup$
    delayed assignments definitely sound slower than immediate, even if I have never worked with Mathematica
    $endgroup$
    – Roland
    Apr 12 at 10:07







  • 2




    $begingroup$
    @Roland it's not just that one is necessarily faster or slower than the other, it's more that they are completely different things with very different applications. For some reason this point is often overlooked by beginners in Mathematica.
    $endgroup$
    – Roman
    Apr 12 at 10:14















12












$begingroup$

I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;

A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
r - s - 24*e*s^-1, r < s];

u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

Array[u, 100]



0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675




(takes about 1.3 seconds)



Alternatively, use



Table[u[i], i, 1, 100]


(same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






share|improve this answer











$endgroup$












  • $begingroup$
    thank you very much. I really appreciate it.
    $endgroup$
    – morapi
    Apr 12 at 6:35






  • 1




    $begingroup$
    delayed assignments definitely sound slower than immediate, even if I have never worked with Mathematica
    $endgroup$
    – Roland
    Apr 12 at 10:07







  • 2




    $begingroup$
    @Roland it's not just that one is necessarily faster or slower than the other, it's more that they are completely different things with very different applications. For some reason this point is often overlooked by beginners in Mathematica.
    $endgroup$
    – Roman
    Apr 12 at 10:14













12












12








12





$begingroup$

I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;

A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
r - s - 24*e*s^-1, r < s];

u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

Array[u, 100]



0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675




(takes about 1.3 seconds)



Alternatively, use



Table[u[i], i, 1, 100]


(same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






share|improve this answer











$endgroup$



I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;

A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
r - s - 24*e*s^-1, r < s];

u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]

Array[u, 100]



0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675




(takes about 1.3 seconds)



Alternatively, use



Table[u[i], i, 1, 100]


(same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.







share|improve this answer














share|improve this answer



share|improve this answer








edited Apr 12 at 8:53

























answered Apr 12 at 4:43









RomanRoman

5,56111131




5,56111131











  • $begingroup$
    thank you very much. I really appreciate it.
    $endgroup$
    – morapi
    Apr 12 at 6:35






  • 1




    $begingroup$
    delayed assignments definitely sound slower than immediate, even if I have never worked with Mathematica
    $endgroup$
    – Roland
    Apr 12 at 10:07







  • 2




    $begingroup$
    @Roland it's not just that one is necessarily faster or slower than the other, it's more that they are completely different things with very different applications. For some reason this point is often overlooked by beginners in Mathematica.
    $endgroup$
    – Roman
    Apr 12 at 10:14
















  • $begingroup$
    thank you very much. I really appreciate it.
    $endgroup$
    – morapi
    Apr 12 at 6:35






  • 1




    $begingroup$
    delayed assignments definitely sound slower than immediate, even if I have never worked with Mathematica
    $endgroup$
    – Roland
    Apr 12 at 10:07







  • 2




    $begingroup$
    @Roland it's not just that one is necessarily faster or slower than the other, it's more that they are completely different things with very different applications. For some reason this point is often overlooked by beginners in Mathematica.
    $endgroup$
    – Roman
    Apr 12 at 10:14















$begingroup$
thank you very much. I really appreciate it.
$endgroup$
– morapi
Apr 12 at 6:35




$begingroup$
thank you very much. I really appreciate it.
$endgroup$
– morapi
Apr 12 at 6:35




1




1




$begingroup$
delayed assignments definitely sound slower than immediate, even if I have never worked with Mathematica
$endgroup$
– Roland
Apr 12 at 10:07





$begingroup$
delayed assignments definitely sound slower than immediate, even if I have never worked with Mathematica
$endgroup$
– Roland
Apr 12 at 10:07





2




2




$begingroup$
@Roland it's not just that one is necessarily faster or slower than the other, it's more that they are completely different things with very different applications. For some reason this point is often overlooked by beginners in Mathematica.
$endgroup$
– Roman
Apr 12 at 10:14




$begingroup$
@Roland it's not just that one is necessarily faster or slower than the other, it's more that they are completely different things with very different applications. For some reason this point is often overlooked by beginners in Mathematica.
$endgroup$
– Roman
Apr 12 at 10:14

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematica Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-recursive-code-so-slow%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

RemoteApp sporadic failureWindows 2008 RemoteAPP client disconnects within a matter of minutesWhat is the minimum version of RDP supported by Server 2012 RDS?How to configure a Remoteapp server to increase stabilityMicrosoft RemoteApp Active SessionRDWeb TS connection broken for some users post RemoteApp certificate changeRemote Desktop Licensing, RemoteAPPRDS 2012 R2 some users are not able to logon after changed date and time on Connection BrokersWhat happens during Remote Desktop logon, and is there any logging?After installing RDS on WinServer 2016 I still can only connect with two users?RD Connection via RDGW to Session host is not connecting

How to write a 12-bar blues melodyI-IV-V blues progressionHow to play the bridges in a standard blues progressionHow does Gdim7 fit in C# minor?question on a certain chord progressionMusicology of Melody12 bar blues, spread rhythm: alternative to 6th chord to avoid finger stretchChord progressions/ Root key/ MelodiesHow to put chords (POP-EDM) under a given lead vocal melody (starting from a good knowledge in music theory)Are there “rules” for improvising with the minor pentatonic scale over 12-bar shuffle?Confusion about blues scale and chords

Esgonzo ibérico Índice Descrición Distribución Hábitat Ameazas Notas Véxase tamén "Acerca dos nomes dos anfibios e réptiles galegos""Chalcides bedriagai"Chalcides bedriagai en Carrascal, L. M. Salvador, A. (Eds). Enciclopedia virtual de los vertebrados españoles. Museo Nacional de Ciencias Naturales, Madrid. España.Fotos