Help with my training dataSKNN regression problemWhat ML/DL approach better suits this problem?Categorical Variable Reduction using NNTensorflow regression predicting 1 for all inputsNeural network accuracy for simple classificationSimple prediction with KerasTraining Accuracy stuck in KerasSteps taking too long to completeSolving an ODE using neural networks (via Tensorflow)Something is disastrously wrong with my neural network and what it's produced

How should I tell my manager I'm not paying for an optional after work event I'm not going to?

Nested loops to process groups of pictures

Is there an age requirement to play in Adventurers League?

Why symmetry transformations have to commute with Hamiltonian?

Why does sound not move through a wall?

Python 3 - simple temperature program

What do I do if my advisor made a mistake?

Agena docking and RCS Brakes in First Man

When an imagined world resembles or has similarities with a famous world

Feasibility of lava beings?

Voltage Balun 1:1

SOQL query WHERE filter by specific months

How do I calculate how many of an item I'll have in this inventory system?

ListPointPlot3D filling between two lists

Is it normal for gliders not to have attitude indicators?

What to use instead of cling film to wrap pastry

Any examples of liquids volatile at room temp but non-flammable?

How to pass hash as password to ssh server

Will 700 more planes a day fly because of the Heathrow expansion?

Which US defense organization would respond to an invasion like this?

Why do people keep telling me that I am a bad photographer?

Should I mention being denied entry to UK due to a confusion in my Visa and Ticket bookings?

Is there a word that describes the unjustified use of a more complex word?

Is there precedent or are there procedures for a US president refusing to concede to an electoral defeat?



Help with my training data


SKNN regression problemWhat ML/DL approach better suits this problem?Categorical Variable Reduction using NNTensorflow regression predicting 1 for all inputsNeural network accuracy for simple classificationSimple prediction with KerasTraining Accuracy stuck in KerasSteps taking too long to completeSolving an ODE using neural networks (via Tensorflow)Something is disastrously wrong with my neural network and what it's produced













1












$begingroup$


I'm working on my first NN following a tensorflow tut and trying to use my own data.
After about 80 attempts of formatting my data and trying to load it into a dataset to train I'm throwing the towel.



Here is how my data currently looks



syslog_data = [
[302014,0,0,63878,30,3,1], [302014,0,0,3891,0,0,0], [302014,0,0,15928,0,0,2], [305013,5,0,123,99999,0,3],
[302014,0,0,5185,0,0,0], [305013,5,0,123,99999,0,3], [302014,0,0,56085,0,0,0], [110002,4,2,50074,99999,0,4],


In this the last item in each list is the label.
If you can tell me if I need to reformat my data and how or just how to get it loaded into a dataset properly.



Thanks for any help or advice you can give



Here is the full code:



import tensorflow as tf
import numpy as np
from tensorflow.keras import layers
from . import syslog

print(tf.VERSION)
print(tf.keras.__version__)

model = tf.keras.Sequential()
# Adds a densely-connected layer with 64 units to the model:
model.add(layers.Dense(64, activation='relu'))
# Add another:
model.add(layers.Dense(64, activation='relu'))
# Add a softmax layer with 10 output units:
model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.train.AdamOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])

dataset = tf.data.dataset.from_tensor_slices(syslog)

model.fit(dataset, epochs=10, steps_per_epoch=30)









share|improve this question











$endgroup$











  • $begingroup$
    WElcome to Data Science SE! Which tutorial did you follow? What error are you actually getting? Have you read the Keras documentation? Or the relevant Tensorflow docs for from_tensor_slices?
    $endgroup$
    – n1k31t4
    Apr 25 at 19:15










  • $begingroup$
    Ive followed about 15 :/ but this one is the most relevant tensorflow.org/guide/keras I have received a number of errors from different attempts. the most recent is this - got shape [8972], but wanted [8972, 1]. from this code dataset = tf.data.Dataset.from_tensor_slices((data, labels)). Im pretty lost on what my training data should look like and how i should import it.
    $endgroup$
    – Alex F
    Apr 25 at 19:23










  • $begingroup$
    I can reformat as needed, I just dont know what to do
    $endgroup$
    – Alex F
    Apr 25 at 19:24















1












$begingroup$


I'm working on my first NN following a tensorflow tut and trying to use my own data.
After about 80 attempts of formatting my data and trying to load it into a dataset to train I'm throwing the towel.



Here is how my data currently looks



syslog_data = [
[302014,0,0,63878,30,3,1], [302014,0,0,3891,0,0,0], [302014,0,0,15928,0,0,2], [305013,5,0,123,99999,0,3],
[302014,0,0,5185,0,0,0], [305013,5,0,123,99999,0,3], [302014,0,0,56085,0,0,0], [110002,4,2,50074,99999,0,4],


In this the last item in each list is the label.
If you can tell me if I need to reformat my data and how or just how to get it loaded into a dataset properly.



Thanks for any help or advice you can give



Here is the full code:



import tensorflow as tf
import numpy as np
from tensorflow.keras import layers
from . import syslog

print(tf.VERSION)
print(tf.keras.__version__)

model = tf.keras.Sequential()
# Adds a densely-connected layer with 64 units to the model:
model.add(layers.Dense(64, activation='relu'))
# Add another:
model.add(layers.Dense(64, activation='relu'))
# Add a softmax layer with 10 output units:
model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.train.AdamOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])

dataset = tf.data.dataset.from_tensor_slices(syslog)

model.fit(dataset, epochs=10, steps_per_epoch=30)









share|improve this question











$endgroup$











  • $begingroup$
    WElcome to Data Science SE! Which tutorial did you follow? What error are you actually getting? Have you read the Keras documentation? Or the relevant Tensorflow docs for from_tensor_slices?
    $endgroup$
    – n1k31t4
    Apr 25 at 19:15










  • $begingroup$
    Ive followed about 15 :/ but this one is the most relevant tensorflow.org/guide/keras I have received a number of errors from different attempts. the most recent is this - got shape [8972], but wanted [8972, 1]. from this code dataset = tf.data.Dataset.from_tensor_slices((data, labels)). Im pretty lost on what my training data should look like and how i should import it.
    $endgroup$
    – Alex F
    Apr 25 at 19:23










  • $begingroup$
    I can reformat as needed, I just dont know what to do
    $endgroup$
    – Alex F
    Apr 25 at 19:24













1












1








1





$begingroup$


I'm working on my first NN following a tensorflow tut and trying to use my own data.
After about 80 attempts of formatting my data and trying to load it into a dataset to train I'm throwing the towel.



Here is how my data currently looks



syslog_data = [
[302014,0,0,63878,30,3,1], [302014,0,0,3891,0,0,0], [302014,0,0,15928,0,0,2], [305013,5,0,123,99999,0,3],
[302014,0,0,5185,0,0,0], [305013,5,0,123,99999,0,3], [302014,0,0,56085,0,0,0], [110002,4,2,50074,99999,0,4],


In this the last item in each list is the label.
If you can tell me if I need to reformat my data and how or just how to get it loaded into a dataset properly.



Thanks for any help or advice you can give



Here is the full code:



import tensorflow as tf
import numpy as np
from tensorflow.keras import layers
from . import syslog

print(tf.VERSION)
print(tf.keras.__version__)

model = tf.keras.Sequential()
# Adds a densely-connected layer with 64 units to the model:
model.add(layers.Dense(64, activation='relu'))
# Add another:
model.add(layers.Dense(64, activation='relu'))
# Add a softmax layer with 10 output units:
model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.train.AdamOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])

dataset = tf.data.dataset.from_tensor_slices(syslog)

model.fit(dataset, epochs=10, steps_per_epoch=30)









share|improve this question











$endgroup$




I'm working on my first NN following a tensorflow tut and trying to use my own data.
After about 80 attempts of formatting my data and trying to load it into a dataset to train I'm throwing the towel.



Here is how my data currently looks



syslog_data = [
[302014,0,0,63878,30,3,1], [302014,0,0,3891,0,0,0], [302014,0,0,15928,0,0,2], [305013,5,0,123,99999,0,3],
[302014,0,0,5185,0,0,0], [305013,5,0,123,99999,0,3], [302014,0,0,56085,0,0,0], [110002,4,2,50074,99999,0,4],


In this the last item in each list is the label.
If you can tell me if I need to reformat my data and how or just how to get it loaded into a dataset properly.



Thanks for any help or advice you can give



Here is the full code:



import tensorflow as tf
import numpy as np
from tensorflow.keras import layers
from . import syslog

print(tf.VERSION)
print(tf.keras.__version__)

model = tf.keras.Sequential()
# Adds a densely-connected layer with 64 units to the model:
model.add(layers.Dense(64, activation='relu'))
# Add another:
model.add(layers.Dense(64, activation='relu'))
# Add a softmax layer with 10 output units:
model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.train.AdamOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])

dataset = tf.data.dataset.from_tensor_slices(syslog)

model.fit(dataset, epochs=10, steps_per_epoch=30)






python tensorflow






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 25 at 19:27









Juan Esteban de la Calle

1,10324




1,10324










asked Apr 25 at 18:38









Alex FAlex F

305




305











  • $begingroup$
    WElcome to Data Science SE! Which tutorial did you follow? What error are you actually getting? Have you read the Keras documentation? Or the relevant Tensorflow docs for from_tensor_slices?
    $endgroup$
    – n1k31t4
    Apr 25 at 19:15










  • $begingroup$
    Ive followed about 15 :/ but this one is the most relevant tensorflow.org/guide/keras I have received a number of errors from different attempts. the most recent is this - got shape [8972], but wanted [8972, 1]. from this code dataset = tf.data.Dataset.from_tensor_slices((data, labels)). Im pretty lost on what my training data should look like and how i should import it.
    $endgroup$
    – Alex F
    Apr 25 at 19:23










  • $begingroup$
    I can reformat as needed, I just dont know what to do
    $endgroup$
    – Alex F
    Apr 25 at 19:24
















  • $begingroup$
    WElcome to Data Science SE! Which tutorial did you follow? What error are you actually getting? Have you read the Keras documentation? Or the relevant Tensorflow docs for from_tensor_slices?
    $endgroup$
    – n1k31t4
    Apr 25 at 19:15










  • $begingroup$
    Ive followed about 15 :/ but this one is the most relevant tensorflow.org/guide/keras I have received a number of errors from different attempts. the most recent is this - got shape [8972], but wanted [8972, 1]. from this code dataset = tf.data.Dataset.from_tensor_slices((data, labels)). Im pretty lost on what my training data should look like and how i should import it.
    $endgroup$
    – Alex F
    Apr 25 at 19:23










  • $begingroup$
    I can reformat as needed, I just dont know what to do
    $endgroup$
    – Alex F
    Apr 25 at 19:24















$begingroup$
WElcome to Data Science SE! Which tutorial did you follow? What error are you actually getting? Have you read the Keras documentation? Or the relevant Tensorflow docs for from_tensor_slices?
$endgroup$
– n1k31t4
Apr 25 at 19:15




$begingroup$
WElcome to Data Science SE! Which tutorial did you follow? What error are you actually getting? Have you read the Keras documentation? Or the relevant Tensorflow docs for from_tensor_slices?
$endgroup$
– n1k31t4
Apr 25 at 19:15












$begingroup$
Ive followed about 15 :/ but this one is the most relevant tensorflow.org/guide/keras I have received a number of errors from different attempts. the most recent is this - got shape [8972], but wanted [8972, 1]. from this code dataset = tf.data.Dataset.from_tensor_slices((data, labels)). Im pretty lost on what my training data should look like and how i should import it.
$endgroup$
– Alex F
Apr 25 at 19:23




$begingroup$
Ive followed about 15 :/ but this one is the most relevant tensorflow.org/guide/keras I have received a number of errors from different attempts. the most recent is this - got shape [8972], but wanted [8972, 1]. from this code dataset = tf.data.Dataset.from_tensor_slices((data, labels)). Im pretty lost on what my training data should look like and how i should import it.
$endgroup$
– Alex F
Apr 25 at 19:23












$begingroup$
I can reformat as needed, I just dont know what to do
$endgroup$
– Alex F
Apr 25 at 19:24




$begingroup$
I can reformat as needed, I just dont know what to do
$endgroup$
– Alex F
Apr 25 at 19:24










2 Answers
2






active

oldest

votes


















2












$begingroup$

There are a couple of problems and things you might want to add to your existing script.



Below I separate your example data into two NumPy arrays:



  • input values x

  • labels y

It is also important to make sure they are of type float32, because Tensorflow will complain if you pass it integers (as they otherwise would be interpreted).



The following works for me, the model trains to completion:



import numpy as np
import tensorflow as tf
from tensorflow.keras import layers

syslog_data = [
[302014, 0, 0, 63878, 30, 3, 1],
[302014, 0, 0, 3891, 0, 0, 0],
[302014, 0, 0, 15928, 0, 0, 2],
[305013, 5, 0, 123, 99999, 0, 3],
[302014, 0, 0, 5185, 0, 0, 0],
[305013, 5, 0, 123, 99999, 0, 3],
[302014, 0, 0, 56085, 0, 0, 0],
[110002, 4, 2, 50074, 99999, 0, 4],
]

print(tf.VERSION)
print(tf.keras.__version__)

x = np.array([arr[:-1] for arr in syslog_data], dtype=np.float32)
y = np.array([arr[-1:] for arr in syslog_data], dtype=np.float32)

model = tf.keras.Sequential()
# Adds a densely-connected layer with 64 units to the model:
model.add(layers.Dense(64, activation="relu"))
# Add another:
model.add(layers.Dense(64, activation="relu"))
# Add a softmax layer with 10 output units:
model.add(layers.Dense(10, activation="softmax"))

model.compile(optimizer=tf.train.AdamOptimizer(0.001), loss="categorical_crossentropy", metrics=["accuracy"])

model.fit(x, y, epochs=10, steps_per_epoch=30)





share|improve this answer









$endgroup$








  • 1




    $begingroup$
    I know we just met but I love you
    $endgroup$
    – Alex F
    Apr 25 at 19:37


















1












$begingroup$

import keras
import numpy as np
full_data = np.array(syslog_data)
X = full_data[:,:6]
Y = full_data[:,6]
# Convert labels to categorical one-hot encoding
one_hot_labels = keras.utils.to_categorical(Y, num_classes=10)

model.fit(X,Y, epochs=10, steps_per_epoch=30)


Does this work? I think I might be misunderstanding the problem.






share|improve this answer









$endgroup$












  • $begingroup$
    I didnt under stand that it needed to be an array, thank you for replying
    $endgroup$
    – Alex F
    Apr 25 at 19:39











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f50934%2fhelp-with-my-training-data%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

There are a couple of problems and things you might want to add to your existing script.



Below I separate your example data into two NumPy arrays:



  • input values x

  • labels y

It is also important to make sure they are of type float32, because Tensorflow will complain if you pass it integers (as they otherwise would be interpreted).



The following works for me, the model trains to completion:



import numpy as np
import tensorflow as tf
from tensorflow.keras import layers

syslog_data = [
[302014, 0, 0, 63878, 30, 3, 1],
[302014, 0, 0, 3891, 0, 0, 0],
[302014, 0, 0, 15928, 0, 0, 2],
[305013, 5, 0, 123, 99999, 0, 3],
[302014, 0, 0, 5185, 0, 0, 0],
[305013, 5, 0, 123, 99999, 0, 3],
[302014, 0, 0, 56085, 0, 0, 0],
[110002, 4, 2, 50074, 99999, 0, 4],
]

print(tf.VERSION)
print(tf.keras.__version__)

x = np.array([arr[:-1] for arr in syslog_data], dtype=np.float32)
y = np.array([arr[-1:] for arr in syslog_data], dtype=np.float32)

model = tf.keras.Sequential()
# Adds a densely-connected layer with 64 units to the model:
model.add(layers.Dense(64, activation="relu"))
# Add another:
model.add(layers.Dense(64, activation="relu"))
# Add a softmax layer with 10 output units:
model.add(layers.Dense(10, activation="softmax"))

model.compile(optimizer=tf.train.AdamOptimizer(0.001), loss="categorical_crossentropy", metrics=["accuracy"])

model.fit(x, y, epochs=10, steps_per_epoch=30)





share|improve this answer









$endgroup$








  • 1




    $begingroup$
    I know we just met but I love you
    $endgroup$
    – Alex F
    Apr 25 at 19:37















2












$begingroup$

There are a couple of problems and things you might want to add to your existing script.



Below I separate your example data into two NumPy arrays:



  • input values x

  • labels y

It is also important to make sure they are of type float32, because Tensorflow will complain if you pass it integers (as they otherwise would be interpreted).



The following works for me, the model trains to completion:



import numpy as np
import tensorflow as tf
from tensorflow.keras import layers

syslog_data = [
[302014, 0, 0, 63878, 30, 3, 1],
[302014, 0, 0, 3891, 0, 0, 0],
[302014, 0, 0, 15928, 0, 0, 2],
[305013, 5, 0, 123, 99999, 0, 3],
[302014, 0, 0, 5185, 0, 0, 0],
[305013, 5, 0, 123, 99999, 0, 3],
[302014, 0, 0, 56085, 0, 0, 0],
[110002, 4, 2, 50074, 99999, 0, 4],
]

print(tf.VERSION)
print(tf.keras.__version__)

x = np.array([arr[:-1] for arr in syslog_data], dtype=np.float32)
y = np.array([arr[-1:] for arr in syslog_data], dtype=np.float32)

model = tf.keras.Sequential()
# Adds a densely-connected layer with 64 units to the model:
model.add(layers.Dense(64, activation="relu"))
# Add another:
model.add(layers.Dense(64, activation="relu"))
# Add a softmax layer with 10 output units:
model.add(layers.Dense(10, activation="softmax"))

model.compile(optimizer=tf.train.AdamOptimizer(0.001), loss="categorical_crossentropy", metrics=["accuracy"])

model.fit(x, y, epochs=10, steps_per_epoch=30)





share|improve this answer









$endgroup$








  • 1




    $begingroup$
    I know we just met but I love you
    $endgroup$
    – Alex F
    Apr 25 at 19:37













2












2








2





$begingroup$

There are a couple of problems and things you might want to add to your existing script.



Below I separate your example data into two NumPy arrays:



  • input values x

  • labels y

It is also important to make sure they are of type float32, because Tensorflow will complain if you pass it integers (as they otherwise would be interpreted).



The following works for me, the model trains to completion:



import numpy as np
import tensorflow as tf
from tensorflow.keras import layers

syslog_data = [
[302014, 0, 0, 63878, 30, 3, 1],
[302014, 0, 0, 3891, 0, 0, 0],
[302014, 0, 0, 15928, 0, 0, 2],
[305013, 5, 0, 123, 99999, 0, 3],
[302014, 0, 0, 5185, 0, 0, 0],
[305013, 5, 0, 123, 99999, 0, 3],
[302014, 0, 0, 56085, 0, 0, 0],
[110002, 4, 2, 50074, 99999, 0, 4],
]

print(tf.VERSION)
print(tf.keras.__version__)

x = np.array([arr[:-1] for arr in syslog_data], dtype=np.float32)
y = np.array([arr[-1:] for arr in syslog_data], dtype=np.float32)

model = tf.keras.Sequential()
# Adds a densely-connected layer with 64 units to the model:
model.add(layers.Dense(64, activation="relu"))
# Add another:
model.add(layers.Dense(64, activation="relu"))
# Add a softmax layer with 10 output units:
model.add(layers.Dense(10, activation="softmax"))

model.compile(optimizer=tf.train.AdamOptimizer(0.001), loss="categorical_crossentropy", metrics=["accuracy"])

model.fit(x, y, epochs=10, steps_per_epoch=30)





share|improve this answer









$endgroup$



There are a couple of problems and things you might want to add to your existing script.



Below I separate your example data into two NumPy arrays:



  • input values x

  • labels y

It is also important to make sure they are of type float32, because Tensorflow will complain if you pass it integers (as they otherwise would be interpreted).



The following works for me, the model trains to completion:



import numpy as np
import tensorflow as tf
from tensorflow.keras import layers

syslog_data = [
[302014, 0, 0, 63878, 30, 3, 1],
[302014, 0, 0, 3891, 0, 0, 0],
[302014, 0, 0, 15928, 0, 0, 2],
[305013, 5, 0, 123, 99999, 0, 3],
[302014, 0, 0, 5185, 0, 0, 0],
[305013, 5, 0, 123, 99999, 0, 3],
[302014, 0, 0, 56085, 0, 0, 0],
[110002, 4, 2, 50074, 99999, 0, 4],
]

print(tf.VERSION)
print(tf.keras.__version__)

x = np.array([arr[:-1] for arr in syslog_data], dtype=np.float32)
y = np.array([arr[-1:] for arr in syslog_data], dtype=np.float32)

model = tf.keras.Sequential()
# Adds a densely-connected layer with 64 units to the model:
model.add(layers.Dense(64, activation="relu"))
# Add another:
model.add(layers.Dense(64, activation="relu"))
# Add a softmax layer with 10 output units:
model.add(layers.Dense(10, activation="softmax"))

model.compile(optimizer=tf.train.AdamOptimizer(0.001), loss="categorical_crossentropy", metrics=["accuracy"])

model.fit(x, y, epochs=10, steps_per_epoch=30)






share|improve this answer












share|improve this answer



share|improve this answer










answered Apr 25 at 19:35









n1k31t4n1k31t4

6,8712422




6,8712422







  • 1




    $begingroup$
    I know we just met but I love you
    $endgroup$
    – Alex F
    Apr 25 at 19:37












  • 1




    $begingroup$
    I know we just met but I love you
    $endgroup$
    – Alex F
    Apr 25 at 19:37







1




1




$begingroup$
I know we just met but I love you
$endgroup$
– Alex F
Apr 25 at 19:37




$begingroup$
I know we just met but I love you
$endgroup$
– Alex F
Apr 25 at 19:37











1












$begingroup$

import keras
import numpy as np
full_data = np.array(syslog_data)
X = full_data[:,:6]
Y = full_data[:,6]
# Convert labels to categorical one-hot encoding
one_hot_labels = keras.utils.to_categorical(Y, num_classes=10)

model.fit(X,Y, epochs=10, steps_per_epoch=30)


Does this work? I think I might be misunderstanding the problem.






share|improve this answer









$endgroup$












  • $begingroup$
    I didnt under stand that it needed to be an array, thank you for replying
    $endgroup$
    – Alex F
    Apr 25 at 19:39















1












$begingroup$

import keras
import numpy as np
full_data = np.array(syslog_data)
X = full_data[:,:6]
Y = full_data[:,6]
# Convert labels to categorical one-hot encoding
one_hot_labels = keras.utils.to_categorical(Y, num_classes=10)

model.fit(X,Y, epochs=10, steps_per_epoch=30)


Does this work? I think I might be misunderstanding the problem.






share|improve this answer









$endgroup$












  • $begingroup$
    I didnt under stand that it needed to be an array, thank you for replying
    $endgroup$
    – Alex F
    Apr 25 at 19:39













1












1








1





$begingroup$

import keras
import numpy as np
full_data = np.array(syslog_data)
X = full_data[:,:6]
Y = full_data[:,6]
# Convert labels to categorical one-hot encoding
one_hot_labels = keras.utils.to_categorical(Y, num_classes=10)

model.fit(X,Y, epochs=10, steps_per_epoch=30)


Does this work? I think I might be misunderstanding the problem.






share|improve this answer









$endgroup$



import keras
import numpy as np
full_data = np.array(syslog_data)
X = full_data[:,:6]
Y = full_data[:,6]
# Convert labels to categorical one-hot encoding
one_hot_labels = keras.utils.to_categorical(Y, num_classes=10)

model.fit(X,Y, epochs=10, steps_per_epoch=30)


Does this work? I think I might be misunderstanding the problem.







share|improve this answer












share|improve this answer



share|improve this answer










answered Apr 25 at 19:38









Andy MAndy M

1965




1965











  • $begingroup$
    I didnt under stand that it needed to be an array, thank you for replying
    $endgroup$
    – Alex F
    Apr 25 at 19:39
















  • $begingroup$
    I didnt under stand that it needed to be an array, thank you for replying
    $endgroup$
    – Alex F
    Apr 25 at 19:39















$begingroup$
I didnt under stand that it needed to be an array, thank you for replying
$endgroup$
– Alex F
Apr 25 at 19:39




$begingroup$
I didnt under stand that it needed to be an array, thank you for replying
$endgroup$
– Alex F
Apr 25 at 19:39

















draft saved

draft discarded
















































Thanks for contributing an answer to Data Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f50934%2fhelp-with-my-training-data%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

RemoteApp sporadic failureWindows 2008 RemoteAPP client disconnects within a matter of minutesWhat is the minimum version of RDP supported by Server 2012 RDS?How to configure a Remoteapp server to increase stabilityMicrosoft RemoteApp Active SessionRDWeb TS connection broken for some users post RemoteApp certificate changeRemote Desktop Licensing, RemoteAPPRDS 2012 R2 some users are not able to logon after changed date and time on Connection BrokersWhat happens during Remote Desktop logon, and is there any logging?After installing RDS on WinServer 2016 I still can only connect with two users?RD Connection via RDGW to Session host is not connecting

How to write a 12-bar blues melodyI-IV-V blues progressionHow to play the bridges in a standard blues progressionHow does Gdim7 fit in C# minor?question on a certain chord progressionMusicology of Melody12 bar blues, spread rhythm: alternative to 6th chord to avoid finger stretchChord progressions/ Root key/ MelodiesHow to put chords (POP-EDM) under a given lead vocal melody (starting from a good knowledge in music theory)Are there “rules” for improvising with the minor pentatonic scale over 12-bar shuffle?Confusion about blues scale and chords

Esgonzo ibérico Índice Descrición Distribución Hábitat Ameazas Notas Véxase tamén "Acerca dos nomes dos anfibios e réptiles galegos""Chalcides bedriagai"Chalcides bedriagai en Carrascal, L. M. Salvador, A. (Eds). Enciclopedia virtual de los vertebrados españoles. Museo Nacional de Ciencias Naturales, Madrid. España.Fotos