A pair of spaces equivalent to a pair of CW-complexesSimply connected simplicial complexesQuotients of Cantor cubes onto spaces Standard model structures on $Top$Different model structures on TopIs $partial Gammahookrightarrow Gamma$ a Serre cofibration?Homeomorphism type of pair of faces in a regular CW complexpair of injective morphisms of simplicial groupsRestriction of a cofibration to closed subspacesClosed embedding of CW-complexes

A pair of spaces equivalent to a pair of CW-complexes


Simply connected simplicial complexesQuotients of Cantor cubes onto spaces Standard model structures on $Top$Different model structures on TopIs $partial Gammahookrightarrow Gamma$ a Serre cofibration?Homeomorphism type of pair of faces in a regular CW complexpair of injective morphisms of simplicial groupsRestriction of a cofibration to closed subspacesClosed embedding of CW-complexes













3












$begingroup$


Suppose that $X$ is a CW-complex and $Y$ a CW-subcomplex of $X$. Let $A$ be a closed subspace of $Z$ such that




  1. $Z-A$ is homeomorhic to $X-Y$ and


  2. $Z/A$ homeomorphic to $X/Y$ and

  3. The closure of $Z-A$ in $Z$ is $Z$ it self.

Does it follow that the embedding $Arightarrow Z$
is a cofibration ?










share|cite|improve this question











$endgroup$











  • $begingroup$
    You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
    $endgroup$
    – Tom Goodwillie
    May 28 at 17:37










  • $begingroup$
    @TomGoodwillie Yes, exactly.
    $endgroup$
    – cellular
    May 28 at 17:56















3












$begingroup$


Suppose that $X$ is a CW-complex and $Y$ a CW-subcomplex of $X$. Let $A$ be a closed subspace of $Z$ such that




  1. $Z-A$ is homeomorhic to $X-Y$ and


  2. $Z/A$ homeomorphic to $X/Y$ and

  3. The closure of $Z-A$ in $Z$ is $Z$ it self.

Does it follow that the embedding $Arightarrow Z$
is a cofibration ?










share|cite|improve this question











$endgroup$











  • $begingroup$
    You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
    $endgroup$
    – Tom Goodwillie
    May 28 at 17:37










  • $begingroup$
    @TomGoodwillie Yes, exactly.
    $endgroup$
    – cellular
    May 28 at 17:56













3












3








3





$begingroup$


Suppose that $X$ is a CW-complex and $Y$ a CW-subcomplex of $X$. Let $A$ be a closed subspace of $Z$ such that




  1. $Z-A$ is homeomorhic to $X-Y$ and


  2. $Z/A$ homeomorphic to $X/Y$ and

  3. The closure of $Z-A$ in $Z$ is $Z$ it self.

Does it follow that the embedding $Arightarrow Z$
is a cofibration ?










share|cite|improve this question











$endgroup$




Suppose that $X$ is a CW-complex and $Y$ a CW-subcomplex of $X$. Let $A$ be a closed subspace of $Z$ such that




  1. $Z-A$ is homeomorhic to $X-Y$ and


  2. $Z/A$ homeomorphic to $X/Y$ and

  3. The closure of $Z-A$ in $Z$ is $Z$ it self.

Does it follow that the embedding $Arightarrow Z$
is a cofibration ?







reference-request at.algebraic-topology gn.general-topology cw-complexes






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 28 at 14:47







cellular

















asked May 28 at 14:24









cellularcellular

835




835











  • $begingroup$
    You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
    $endgroup$
    – Tom Goodwillie
    May 28 at 17:37










  • $begingroup$
    @TomGoodwillie Yes, exactly.
    $endgroup$
    – cellular
    May 28 at 17:56
















  • $begingroup$
    You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
    $endgroup$
    – Tom Goodwillie
    May 28 at 17:37










  • $begingroup$
    @TomGoodwillie Yes, exactly.
    $endgroup$
    – cellular
    May 28 at 17:56















$begingroup$
You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
$endgroup$
– Tom Goodwillie
May 28 at 17:37




$begingroup$
You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
$endgroup$
– Tom Goodwillie
May 28 at 17:37












$begingroup$
@TomGoodwillie Yes, exactly.
$endgroup$
– cellular
May 28 at 17:56




$begingroup$
@TomGoodwillie Yes, exactly.
$endgroup$
– cellular
May 28 at 17:56










1 Answer
1






active

oldest

votes


















5












$begingroup$

If you mean cofibration in the sense of Quillen, then no. You can get a counterexample in which $Z-A$ is a $1$-cell.



Take $(X,Y)=(D^1,S^0)$. I will choose a compact space $Z$ with a dense open subset $Ucong D^1-S^0$. Then, writing $A=Z-U$, we get $Z/A$ is homeomorphic to $X/Y$, as they are both the one-point compactification of $D^1-S^0$.



$U$ will be a spiral in the open unit disk in the plane whose limit point set is the entire boundary circle. To be specific, map the unit complex disk to itself by $$re^ithetamapsto re^i(theta+frac11-r)$$Take the real open interval with endpoints $pm 1$ and hit it with this map.



Now if $Z$ is the closure of $U$ so that $A=Z-U$ is the unit circle in the plane then I claim $Ato Z$ is not a cofibration. I believe this follows from the fact that $A$ is one of the path-components of $Z$. Suppose for contradiction that $(Z,A)$ is a retract of a cellular pair $(W,B)$. Let $Vsubset W$ be the union of all the path-components of $W$ having nonempty intersection with $B$. This is open and closed. Its preimage in $Z$ (under the coretraction $i:Zto W$) is open and closed and contains $A$, so it is all of $Z$. But then a point $pin U$ yields a point $i(p)in V$ that can be joined by a path in $W$ to a point in $B$. Applying the retraction, we find that $p$ can be joined by a path in $Z$ to a point in $A$, contradiction.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
    $endgroup$
    – Tom Goodwillie
    May 28 at 21:26











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f332687%2fa-pair-of-spaces-equivalent-to-a-pair-of-cw-complexes%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

If you mean cofibration in the sense of Quillen, then no. You can get a counterexample in which $Z-A$ is a $1$-cell.



Take $(X,Y)=(D^1,S^0)$. I will choose a compact space $Z$ with a dense open subset $Ucong D^1-S^0$. Then, writing $A=Z-U$, we get $Z/A$ is homeomorphic to $X/Y$, as they are both the one-point compactification of $D^1-S^0$.



$U$ will be a spiral in the open unit disk in the plane whose limit point set is the entire boundary circle. To be specific, map the unit complex disk to itself by $$re^ithetamapsto re^i(theta+frac11-r)$$Take the real open interval with endpoints $pm 1$ and hit it with this map.



Now if $Z$ is the closure of $U$ so that $A=Z-U$ is the unit circle in the plane then I claim $Ato Z$ is not a cofibration. I believe this follows from the fact that $A$ is one of the path-components of $Z$. Suppose for contradiction that $(Z,A)$ is a retract of a cellular pair $(W,B)$. Let $Vsubset W$ be the union of all the path-components of $W$ having nonempty intersection with $B$. This is open and closed. Its preimage in $Z$ (under the coretraction $i:Zto W$) is open and closed and contains $A$, so it is all of $Z$. But then a point $pin U$ yields a point $i(p)in V$ that can be joined by a path in $W$ to a point in $B$. Applying the retraction, we find that $p$ can be joined by a path in $Z$ to a point in $A$, contradiction.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
    $endgroup$
    – Tom Goodwillie
    May 28 at 21:26















5












$begingroup$

If you mean cofibration in the sense of Quillen, then no. You can get a counterexample in which $Z-A$ is a $1$-cell.



Take $(X,Y)=(D^1,S^0)$. I will choose a compact space $Z$ with a dense open subset $Ucong D^1-S^0$. Then, writing $A=Z-U$, we get $Z/A$ is homeomorphic to $X/Y$, as they are both the one-point compactification of $D^1-S^0$.



$U$ will be a spiral in the open unit disk in the plane whose limit point set is the entire boundary circle. To be specific, map the unit complex disk to itself by $$re^ithetamapsto re^i(theta+frac11-r)$$Take the real open interval with endpoints $pm 1$ and hit it with this map.



Now if $Z$ is the closure of $U$ so that $A=Z-U$ is the unit circle in the plane then I claim $Ato Z$ is not a cofibration. I believe this follows from the fact that $A$ is one of the path-components of $Z$. Suppose for contradiction that $(Z,A)$ is a retract of a cellular pair $(W,B)$. Let $Vsubset W$ be the union of all the path-components of $W$ having nonempty intersection with $B$. This is open and closed. Its preimage in $Z$ (under the coretraction $i:Zto W$) is open and closed and contains $A$, so it is all of $Z$. But then a point $pin U$ yields a point $i(p)in V$ that can be joined by a path in $W$ to a point in $B$. Applying the retraction, we find that $p$ can be joined by a path in $Z$ to a point in $A$, contradiction.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
    $endgroup$
    – Tom Goodwillie
    May 28 at 21:26













5












5








5





$begingroup$

If you mean cofibration in the sense of Quillen, then no. You can get a counterexample in which $Z-A$ is a $1$-cell.



Take $(X,Y)=(D^1,S^0)$. I will choose a compact space $Z$ with a dense open subset $Ucong D^1-S^0$. Then, writing $A=Z-U$, we get $Z/A$ is homeomorphic to $X/Y$, as they are both the one-point compactification of $D^1-S^0$.



$U$ will be a spiral in the open unit disk in the plane whose limit point set is the entire boundary circle. To be specific, map the unit complex disk to itself by $$re^ithetamapsto re^i(theta+frac11-r)$$Take the real open interval with endpoints $pm 1$ and hit it with this map.



Now if $Z$ is the closure of $U$ so that $A=Z-U$ is the unit circle in the plane then I claim $Ato Z$ is not a cofibration. I believe this follows from the fact that $A$ is one of the path-components of $Z$. Suppose for contradiction that $(Z,A)$ is a retract of a cellular pair $(W,B)$. Let $Vsubset W$ be the union of all the path-components of $W$ having nonempty intersection with $B$. This is open and closed. Its preimage in $Z$ (under the coretraction $i:Zto W$) is open and closed and contains $A$, so it is all of $Z$. But then a point $pin U$ yields a point $i(p)in V$ that can be joined by a path in $W$ to a point in $B$. Applying the retraction, we find that $p$ can be joined by a path in $Z$ to a point in $A$, contradiction.






share|cite|improve this answer









$endgroup$



If you mean cofibration in the sense of Quillen, then no. You can get a counterexample in which $Z-A$ is a $1$-cell.



Take $(X,Y)=(D^1,S^0)$. I will choose a compact space $Z$ with a dense open subset $Ucong D^1-S^0$. Then, writing $A=Z-U$, we get $Z/A$ is homeomorphic to $X/Y$, as they are both the one-point compactification of $D^1-S^0$.



$U$ will be a spiral in the open unit disk in the plane whose limit point set is the entire boundary circle. To be specific, map the unit complex disk to itself by $$re^ithetamapsto re^i(theta+frac11-r)$$Take the real open interval with endpoints $pm 1$ and hit it with this map.



Now if $Z$ is the closure of $U$ so that $A=Z-U$ is the unit circle in the plane then I claim $Ato Z$ is not a cofibration. I believe this follows from the fact that $A$ is one of the path-components of $Z$. Suppose for contradiction that $(Z,A)$ is a retract of a cellular pair $(W,B)$. Let $Vsubset W$ be the union of all the path-components of $W$ having nonempty intersection with $B$. This is open and closed. Its preimage in $Z$ (under the coretraction $i:Zto W$) is open and closed and contains $A$, so it is all of $Z$. But then a point $pin U$ yields a point $i(p)in V$ that can be joined by a path in $W$ to a point in $B$. Applying the retraction, we find that $p$ can be joined by a path in $Z$ to a point in $A$, contradiction.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered May 28 at 17:59









Tom GoodwillieTom Goodwillie

40.9k3112202




40.9k3112202











  • $begingroup$
    More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
    $endgroup$
    – Tom Goodwillie
    May 28 at 21:26
















  • $begingroup$
    More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
    $endgroup$
    – Tom Goodwillie
    May 28 at 21:26















$begingroup$
More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
$endgroup$
– Tom Goodwillie
May 28 at 21:26




$begingroup$
More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
$endgroup$
– Tom Goodwillie
May 28 at 21:26

















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f332687%2fa-pair-of-spaces-equivalent-to-a-pair-of-cw-complexes%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

RemoteApp sporadic failureWindows 2008 RemoteAPP client disconnects within a matter of minutesWhat is the minimum version of RDP supported by Server 2012 RDS?How to configure a Remoteapp server to increase stabilityMicrosoft RemoteApp Active SessionRDWeb TS connection broken for some users post RemoteApp certificate changeRemote Desktop Licensing, RemoteAPPRDS 2012 R2 some users are not able to logon after changed date and time on Connection BrokersWhat happens during Remote Desktop logon, and is there any logging?After installing RDS on WinServer 2016 I still can only connect with two users?RD Connection via RDGW to Session host is not connecting

How to write a 12-bar blues melodyI-IV-V blues progressionHow to play the bridges in a standard blues progressionHow does Gdim7 fit in C# minor?question on a certain chord progressionMusicology of Melody12 bar blues, spread rhythm: alternative to 6th chord to avoid finger stretchChord progressions/ Root key/ MelodiesHow to put chords (POP-EDM) under a given lead vocal melody (starting from a good knowledge in music theory)Are there “rules” for improvising with the minor pentatonic scale over 12-bar shuffle?Confusion about blues scale and chords

Esgonzo ibérico Índice Descrición Distribución Hábitat Ameazas Notas Véxase tamén "Acerca dos nomes dos anfibios e réptiles galegos""Chalcides bedriagai"Chalcides bedriagai en Carrascal, L. M. Salvador, A. (Eds). Enciclopedia virtual de los vertebrados españoles. Museo Nacional de Ciencias Naturales, Madrid. España.Fotos