How many permutations does a countable set have? [duplicate] The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is symmetric group on natural numbers countable?Prove why this algorithm to compute all list permutations worksLooks like we picked the wrong theorem to popularize (Cantor diagonalization)Can someone please clarify combinations vs permutations?Mapping from reals to naturals if naturals can be used infinitely many timesWhy are positive rational numbers countable but real numbers are not?Is there a model of ZFC in which every real number is definable?Series that converge to every real number via permutationSeries and ConsistencyThe set of all digits in a real numberExplicit bijection between $Bbb R$ and permutations of $Bbb N$

Why not take a picture of a closer black hole?

Are spiders unable to hurt humans, especially very small spiders?

Is there a writing software that you can sort scenes like slides in PowerPoint?

How to make Illustrator type tool selection automatically adapt with text length

Can a flute soloist sit?

Huge performance difference of the command find with and without using %M option to show permissions

Mortgage adviser recommends a longer term than necessary combined with overpayments

Working through the single responsibility principle (SRP) in Python when calls are expensive

How to handle characters who are more educated than the author?

Could an empire control the whole planet with today's comunication methods?

Make it rain characters

How do I design a circuit to convert a 100 mV and 50 Hz sine wave to a square wave?

Is this wall load bearing? Blueprints and photos attached

Deal with toxic manager when you can't quit

Presidential Pardon

Store Dynamic-accessible hidden metadata in a cell

How to read αἱμύλιος or when to aspirate

How do you keep chess fun when your opponent constantly beats you?

Student Loan from years ago pops up and is taking my salary

Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?

What is the padding with red substance inside of steak packaging?

My body leaves; my core can stay



How many permutations does a countable set have? [duplicate]



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is symmetric group on natural numbers countable?Prove why this algorithm to compute all list permutations worksLooks like we picked the wrong theorem to popularize (Cantor diagonalization)Can someone please clarify combinations vs permutations?Mapping from reals to naturals if naturals can be used infinitely many timesWhy are positive rational numbers countable but real numbers are not?Is there a model of ZFC in which every real number is definable?Series that converge to every real number via permutationSeries and ConsistencyThe set of all digits in a real numberExplicit bijection between $Bbb R$ and permutations of $Bbb N$










2












$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38















2












$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38













2












2








2


0



$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?





This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers







permutations real-numbers






share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited Apr 8 at 12:38









Asaf Karagila

308k33441775




308k33441775






New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Apr 8 at 10:53









Lorenzo Lorenzo

184




184




New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.













  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38
















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38















$begingroup$
While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
$endgroup$
– Asaf Karagila
Apr 8 at 12:38




$begingroup$
While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
$endgroup$
– Asaf Karagila
Apr 8 at 12:38










1 Answer
1






active

oldest

votes


















6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20

















1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20















6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20













6












6








6





$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$



Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 8 at 10:57









5xum5xum

92.6k394162




92.6k394162











  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20
















  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20















$begingroup$
Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
$endgroup$
– Lorenzo
Apr 8 at 11:07




$begingroup$
Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
$endgroup$
– Lorenzo
Apr 8 at 11:07




1




1




$begingroup$
@Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
$endgroup$
– 5xum
Apr 8 at 11:08




$begingroup$
@Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
$endgroup$
– 5xum
Apr 8 at 11:08












$begingroup$
just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
$endgroup$
– Lorenzo
Apr 8 at 11:12




$begingroup$
just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
$endgroup$
– Lorenzo
Apr 8 at 11:12












$begingroup$
@Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
$endgroup$
– 5xum
Apr 8 at 11:13





$begingroup$
@Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
$endgroup$
– 5xum
Apr 8 at 11:13













$begingroup$
Ok I get it now, thanks
$endgroup$
– Lorenzo
Apr 8 at 11:20




$begingroup$
Ok I get it now, thanks
$endgroup$
– Lorenzo
Apr 8 at 11:20



Popular posts from this blog

RemoteApp sporadic failureWindows 2008 RemoteAPP client disconnects within a matter of minutesWhat is the minimum version of RDP supported by Server 2012 RDS?How to configure a Remoteapp server to increase stabilityMicrosoft RemoteApp Active SessionRDWeb TS connection broken for some users post RemoteApp certificate changeRemote Desktop Licensing, RemoteAPPRDS 2012 R2 some users are not able to logon after changed date and time on Connection BrokersWhat happens during Remote Desktop logon, and is there any logging?After installing RDS on WinServer 2016 I still can only connect with two users?RD Connection via RDGW to Session host is not connecting

How to write a 12-bar blues melodyI-IV-V blues progressionHow to play the bridges in a standard blues progressionHow does Gdim7 fit in C# minor?question on a certain chord progressionMusicology of Melody12 bar blues, spread rhythm: alternative to 6th chord to avoid finger stretchChord progressions/ Root key/ MelodiesHow to put chords (POP-EDM) under a given lead vocal melody (starting from a good knowledge in music theory)Are there “rules” for improvising with the minor pentatonic scale over 12-bar shuffle?Confusion about blues scale and chords

Esgonzo ibérico Índice Descrición Distribución Hábitat Ameazas Notas Véxase tamén "Acerca dos nomes dos anfibios e réptiles galegos""Chalcides bedriagai"Chalcides bedriagai en Carrascal, L. M. Salvador, A. (Eds). Enciclopedia virtual de los vertebrados españoles. Museo Nacional de Ciencias Naturales, Madrid. España.Fotos