Find limit in use of integralshow to find the limit?Find limit $lim_x rightarrow 0 , fracarctan(3x)tanbig((x+3pi)/3big)$ without using L'Hospital's rulemathematical analysisLimit of a complex sequenceUsing the mean value theorem calculate this limit : $lim_x rightarrow 0 fracarctan(x^2+x-1)+fracpi4x^2+3x$Limit of a definite integral with parameter (2)Limit of $(intlimits_0^n (1+arctan^2x ),dx )^ frac1n$limit of and integral depending on nA tricky limit involving exponential integralsFind limit supremum from 3 sequence theorem

Is there a set of positive integers of density 1 which contains no infinite arithmetic progression?

Should I refuse to be named as co-author of a low quality paper?

Did Apple bundle a specific monitor with the Apple II+ for schools?

Does the new finding on "reversing a quantum jump mid-flight" rule out any interpretations of QM?

Why does this query, missing a FROM clause, not error out?

Write a function that checks if a string starts with or contains something

Is the use of umgeben in the passive unusual?

Increase speed altering column on large table to NON NULL

Does putting salt first make it easier for attacker to bruteforce the hash?

How to publish items after pipeline is finished?

Separate SPI data

Electricity free spaceship

Who won a Game of Bar Dice?

Java Servlet & JSP simple login

How can one's career as a reviewer be ended?

Proving that a Russian cryptographic standard is too structured

How can I remove material from this wood beam?

Please figure out this Pan digital Prince

How to avoid typing 'git' at the begining of every Git command

Do people with slow metabolism tend to gain weight (fat) if they stop exercising?

60s or 70s novel about Empire of Man making 1st contact with 1st discovered alien race

If I leave the US through an airport, do I have to return through the same airport?

Analogy between an unknown in an argument, and a contradiction in the principle of explosion

Why is Na5 not played in this line of the French Defense, Advance Variation?



Find limit in use of integrals


how to find the limit?Find limit $lim_x rightarrow 0 , fracarctan(3x)tanbig((x+3pi)/3big)$ without using L'Hospital's rulemathematical analysisLimit of a complex sequenceUsing the mean value theorem calculate this limit : $lim_x rightarrow 0 fracarctan(x^2+x-1)+fracpi4x^2+3x$Limit of a definite integral with parameter (2)Limit of $(intlimits_0^n (1+arctan^2x ),dx )^ frac1n$limit of and integral depending on nA tricky limit involving exponential integralsFind limit supremum from 3 sequence theorem













4












$begingroup$


Find limit $lim_n rightarrow infty int_-1^1 x^5 cdot arctan(nx) dx $



From mean-value-theorem we have
$$ frac12 c^5 cdot arctan(nc) mbox for some c in (-1,1) $$



$$ underbracefrac12 cdot arctan(-n)_rightarrow - pi /4 le frac12 c^5 cdot arctan(nc) le underbracefrac12 cdot arctan(n)_rightarrow pi /4 $$



so this bounding doesn't help me. Has somebody better idea how to bound that?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Is there a reason to not just do the integration?
    $endgroup$
    – Clayton
    May 25 at 15:45















4












$begingroup$


Find limit $lim_n rightarrow infty int_-1^1 x^5 cdot arctan(nx) dx $



From mean-value-theorem we have
$$ frac12 c^5 cdot arctan(nc) mbox for some c in (-1,1) $$



$$ underbracefrac12 cdot arctan(-n)_rightarrow - pi /4 le frac12 c^5 cdot arctan(nc) le underbracefrac12 cdot arctan(n)_rightarrow pi /4 $$



so this bounding doesn't help me. Has somebody better idea how to bound that?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Is there a reason to not just do the integration?
    $endgroup$
    – Clayton
    May 25 at 15:45













4












4








4





$begingroup$


Find limit $lim_n rightarrow infty int_-1^1 x^5 cdot arctan(nx) dx $



From mean-value-theorem we have
$$ frac12 c^5 cdot arctan(nc) mbox for some c in (-1,1) $$



$$ underbracefrac12 cdot arctan(-n)_rightarrow - pi /4 le frac12 c^5 cdot arctan(nc) le underbracefrac12 cdot arctan(n)_rightarrow pi /4 $$



so this bounding doesn't help me. Has somebody better idea how to bound that?










share|cite|improve this question









$endgroup$




Find limit $lim_n rightarrow infty int_-1^1 x^5 cdot arctan(nx) dx $



From mean-value-theorem we have
$$ frac12 c^5 cdot arctan(nc) mbox for some c in (-1,1) $$



$$ underbracefrac12 cdot arctan(-n)_rightarrow - pi /4 le frac12 c^5 cdot arctan(nc) le underbracefrac12 cdot arctan(n)_rightarrow pi /4 $$



so this bounding doesn't help me. Has somebody better idea how to bound that?







integration limits






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 25 at 15:41









Trebacz112Trebacz112

675




675











  • $begingroup$
    Is there a reason to not just do the integration?
    $endgroup$
    – Clayton
    May 25 at 15:45
















  • $begingroup$
    Is there a reason to not just do the integration?
    $endgroup$
    – Clayton
    May 25 at 15:45















$begingroup$
Is there a reason to not just do the integration?
$endgroup$
– Clayton
May 25 at 15:45




$begingroup$
Is there a reason to not just do the integration?
$endgroup$
– Clayton
May 25 at 15:45










2 Answers
2






active

oldest

votes


















4












$begingroup$

We'll simplify with $y=nx$. Integration by parts gives $$int y^5arctan ydy=fracy^66arctan y-frac16intfracy^61+y^2dy\=fracy^66arctan y-frac16intleft(y^4-y^2+1-frac11+y^2right)dy\=fracy^6+16arctan y-frac130y^5+frac118y^3-frac16 y+C.$$Hence $$frac1n^6int_-n^n y^5arctan ydy=fracfracn^63arctan n+o(n^6)n^6stackrelntoinftytofrac13arctaninfty=fracpi6.$$But it seems such a shame to compute the antiderivative's irrelevant polynomial terms. So for an alternative strategy, let's write the problem as $2lim_ntoinftyint_0^1 x^5arctan nxdx$ (since the integrand is even), which by dominated convergence is $$piint_0^1 x^5dx=fracpi6.$$






share|cite|improve this answer











$endgroup$




















    3












    $begingroup$

    Hint: For the integral $$int_-1^1x^5arctan(nx)dx$$ we get
    $$frac15 left(n^6+1right) tan ^-1(n)-3 n^5+5
    n^3-15 n45 n^6$$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
      $endgroup$
      – Trebacz112
      May 25 at 15:46










    • $begingroup$
      Partial fractions, @Trebacz112
      $endgroup$
      – Clayton
      May 25 at 15:47






    • 1




      $begingroup$
      Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
      $endgroup$
      – Dr. Sonnhard Graubner
      May 25 at 15:49











    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3239397%2ffind-limit-in-use-of-integrals%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    We'll simplify with $y=nx$. Integration by parts gives $$int y^5arctan ydy=fracy^66arctan y-frac16intfracy^61+y^2dy\=fracy^66arctan y-frac16intleft(y^4-y^2+1-frac11+y^2right)dy\=fracy^6+16arctan y-frac130y^5+frac118y^3-frac16 y+C.$$Hence $$frac1n^6int_-n^n y^5arctan ydy=fracfracn^63arctan n+o(n^6)n^6stackrelntoinftytofrac13arctaninfty=fracpi6.$$But it seems such a shame to compute the antiderivative's irrelevant polynomial terms. So for an alternative strategy, let's write the problem as $2lim_ntoinftyint_0^1 x^5arctan nxdx$ (since the integrand is even), which by dominated convergence is $$piint_0^1 x^5dx=fracpi6.$$






    share|cite|improve this answer











    $endgroup$

















      4












      $begingroup$

      We'll simplify with $y=nx$. Integration by parts gives $$int y^5arctan ydy=fracy^66arctan y-frac16intfracy^61+y^2dy\=fracy^66arctan y-frac16intleft(y^4-y^2+1-frac11+y^2right)dy\=fracy^6+16arctan y-frac130y^5+frac118y^3-frac16 y+C.$$Hence $$frac1n^6int_-n^n y^5arctan ydy=fracfracn^63arctan n+o(n^6)n^6stackrelntoinftytofrac13arctaninfty=fracpi6.$$But it seems such a shame to compute the antiderivative's irrelevant polynomial terms. So for an alternative strategy, let's write the problem as $2lim_ntoinftyint_0^1 x^5arctan nxdx$ (since the integrand is even), which by dominated convergence is $$piint_0^1 x^5dx=fracpi6.$$






      share|cite|improve this answer











      $endgroup$















        4












        4








        4





        $begingroup$

        We'll simplify with $y=nx$. Integration by parts gives $$int y^5arctan ydy=fracy^66arctan y-frac16intfracy^61+y^2dy\=fracy^66arctan y-frac16intleft(y^4-y^2+1-frac11+y^2right)dy\=fracy^6+16arctan y-frac130y^5+frac118y^3-frac16 y+C.$$Hence $$frac1n^6int_-n^n y^5arctan ydy=fracfracn^63arctan n+o(n^6)n^6stackrelntoinftytofrac13arctaninfty=fracpi6.$$But it seems such a shame to compute the antiderivative's irrelevant polynomial terms. So for an alternative strategy, let's write the problem as $2lim_ntoinftyint_0^1 x^5arctan nxdx$ (since the integrand is even), which by dominated convergence is $$piint_0^1 x^5dx=fracpi6.$$






        share|cite|improve this answer











        $endgroup$



        We'll simplify with $y=nx$. Integration by parts gives $$int y^5arctan ydy=fracy^66arctan y-frac16intfracy^61+y^2dy\=fracy^66arctan y-frac16intleft(y^4-y^2+1-frac11+y^2right)dy\=fracy^6+16arctan y-frac130y^5+frac118y^3-frac16 y+C.$$Hence $$frac1n^6int_-n^n y^5arctan ydy=fracfracn^63arctan n+o(n^6)n^6stackrelntoinftytofrac13arctaninfty=fracpi6.$$But it seems such a shame to compute the antiderivative's irrelevant polynomial terms. So for an alternative strategy, let's write the problem as $2lim_ntoinftyint_0^1 x^5arctan nxdx$ (since the integrand is even), which by dominated convergence is $$piint_0^1 x^5dx=fracpi6.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited May 25 at 15:55

























        answered May 25 at 15:50









        J.G.J.G.

        39.6k23758




        39.6k23758





















            3












            $begingroup$

            Hint: For the integral $$int_-1^1x^5arctan(nx)dx$$ we get
            $$frac15 left(n^6+1right) tan ^-1(n)-3 n^5+5
            n^3-15 n45 n^6$$






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
              $endgroup$
              – Trebacz112
              May 25 at 15:46










            • $begingroup$
              Partial fractions, @Trebacz112
              $endgroup$
              – Clayton
              May 25 at 15:47






            • 1




              $begingroup$
              Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
              $endgroup$
              – Dr. Sonnhard Graubner
              May 25 at 15:49















            3












            $begingroup$

            Hint: For the integral $$int_-1^1x^5arctan(nx)dx$$ we get
            $$frac15 left(n^6+1right) tan ^-1(n)-3 n^5+5
            n^3-15 n45 n^6$$






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
              $endgroup$
              – Trebacz112
              May 25 at 15:46










            • $begingroup$
              Partial fractions, @Trebacz112
              $endgroup$
              – Clayton
              May 25 at 15:47






            • 1




              $begingroup$
              Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
              $endgroup$
              – Dr. Sonnhard Graubner
              May 25 at 15:49













            3












            3








            3





            $begingroup$

            Hint: For the integral $$int_-1^1x^5arctan(nx)dx$$ we get
            $$frac15 left(n^6+1right) tan ^-1(n)-3 n^5+5
            n^3-15 n45 n^6$$






            share|cite|improve this answer









            $endgroup$



            Hint: For the integral $$int_-1^1x^5arctan(nx)dx$$ we get
            $$frac15 left(n^6+1right) tan ^-1(n)-3 n^5+5
            n^3-15 n45 n^6$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered May 25 at 15:45









            Dr. Sonnhard GraubnerDr. Sonnhard Graubner

            82.3k42867




            82.3k42867











            • $begingroup$
              When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
              $endgroup$
              – Trebacz112
              May 25 at 15:46










            • $begingroup$
              Partial fractions, @Trebacz112
              $endgroup$
              – Clayton
              May 25 at 15:47






            • 1




              $begingroup$
              Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
              $endgroup$
              – Dr. Sonnhard Graubner
              May 25 at 15:49
















            • $begingroup$
              When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
              $endgroup$
              – Trebacz112
              May 25 at 15:46










            • $begingroup$
              Partial fractions, @Trebacz112
              $endgroup$
              – Clayton
              May 25 at 15:47






            • 1




              $begingroup$
              Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
              $endgroup$
              – Dr. Sonnhard Graubner
              May 25 at 15:49















            $begingroup$
            When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
            $endgroup$
            – Trebacz112
            May 25 at 15:46




            $begingroup$
            When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
            $endgroup$
            – Trebacz112
            May 25 at 15:46












            $begingroup$
            Partial fractions, @Trebacz112
            $endgroup$
            – Clayton
            May 25 at 15:47




            $begingroup$
            Partial fractions, @Trebacz112
            $endgroup$
            – Clayton
            May 25 at 15:47




            1




            1




            $begingroup$
            Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
            $endgroup$
            – Dr. Sonnhard Graubner
            May 25 at 15:49




            $begingroup$
            Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
            $endgroup$
            – Dr. Sonnhard Graubner
            May 25 at 15:49

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3239397%2ffind-limit-in-use-of-integrals%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            RemoteApp sporadic failureWindows 2008 RemoteAPP client disconnects within a matter of minutesWhat is the minimum version of RDP supported by Server 2012 RDS?How to configure a Remoteapp server to increase stabilityMicrosoft RemoteApp Active SessionRDWeb TS connection broken for some users post RemoteApp certificate changeRemote Desktop Licensing, RemoteAPPRDS 2012 R2 some users are not able to logon after changed date and time on Connection BrokersWhat happens during Remote Desktop logon, and is there any logging?After installing RDS on WinServer 2016 I still can only connect with two users?RD Connection via RDGW to Session host is not connecting

            How to write a 12-bar blues melodyI-IV-V blues progressionHow to play the bridges in a standard blues progressionHow does Gdim7 fit in C# minor?question on a certain chord progressionMusicology of Melody12 bar blues, spread rhythm: alternative to 6th chord to avoid finger stretchChord progressions/ Root key/ MelodiesHow to put chords (POP-EDM) under a given lead vocal melody (starting from a good knowledge in music theory)Are there “rules” for improvising with the minor pentatonic scale over 12-bar shuffle?Confusion about blues scale and chords

            Esgonzo ibérico Índice Descrición Distribución Hábitat Ameazas Notas Véxase tamén "Acerca dos nomes dos anfibios e réptiles galegos""Chalcides bedriagai"Chalcides bedriagai en Carrascal, L. M. Salvador, A. (Eds). Enciclopedia virtual de los vertebrados españoles. Museo Nacional de Ciencias Naturales, Madrid. España.Fotos