Can threat to survival increase mutation rates in germline cells? The Next CEO of Stack OverflowMutation rate in virusescan a point mutation cause a frameshift?Source for an upper bound in the number of genes based on mutation ratesPoint mutation vs IndelsCan mutation rate be selected for?For long term survival of a species in a harsh environment which is more important-mutation or evolution?Is there an existing database of mutation rates for mitochondrial loci?Can a less fit species evolve from a more fit species, by living at separate places?Does the mutation CCR5-delta 32 increase the genetic info?Are inadvertent environmental catastrophes also examples of natural selection?

Flying from Cape Town to England and return to another province

Should I tutor a student who I know has cheated on their homework?

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

Would a completely good Muggle be able to use a wand?

Legal workarounds for testamentary trust perceived as unfair

Can we say or write : "No, it'sn't"?

Is there a difference between "Fahrstuhl" and "Aufzug"

Axiom Schema vs Axiom

Won the lottery - how do I keep the money?

Why did CATV standarize in 75 ohms and everyone else in 50?

Easy to read palindrome checker

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

Some questions about different axiomatic systems for neighbourhoods

Why do airplanes bank sharply to the right after air-to-air refueling?

Why isn't acceleration always zero whenever velocity is zero, such as the moment a ball bounces off a wall?

Where do students learn to solve polynomial equations these days?

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Why didn't Khan get resurrected in the Genesis Explosion?

Rotate a column

Bartok - Syncopation (1): Meaning of notes in between Grand Staff

Is it okay to majorly distort historical facts while writing a fiction story?

Why doesn't UK go for the same deal Japan has with EU to resolve Brexit?

Why don't programming languages automatically manage the synchronous/asynchronous problem?

Is it convenient to ask the journal's editor for two additional days to complete a review?



Can threat to survival increase mutation rates in germline cells?



The Next CEO of Stack OverflowMutation rate in virusescan a point mutation cause a frameshift?Source for an upper bound in the number of genes based on mutation ratesPoint mutation vs IndelsCan mutation rate be selected for?For long term survival of a species in a harsh environment which is more important-mutation or evolution?Is there an existing database of mutation rates for mitochondrial loci?Can a less fit species evolve from a more fit species, by living at separate places?Does the mutation CCR5-delta 32 increase the genetic info?Are inadvertent environmental catastrophes also examples of natural selection?










2












$begingroup$


Can stress that is related to a threat of survival of a population of animals or plants in some environment, like due to hunger, thirst, fear from predators, etc..; results in an increase in average mutation rate in germline cells of individuals of that population, thereby increasing the likelihood of producing heritable trait(s) that might be beneficial to that population in combating those adverse survival conditions in that environment?



In bacteria this is known as "Stress Induced Mutagensis"



Is there something comparable to that in animals and plants?










share|improve this question











$endgroup$
















    2












    $begingroup$


    Can stress that is related to a threat of survival of a population of animals or plants in some environment, like due to hunger, thirst, fear from predators, etc..; results in an increase in average mutation rate in germline cells of individuals of that population, thereby increasing the likelihood of producing heritable trait(s) that might be beneficial to that population in combating those adverse survival conditions in that environment?



    In bacteria this is known as "Stress Induced Mutagensis"



    Is there something comparable to that in animals and plants?










    share|improve this question











    $endgroup$














      2












      2








      2


      1



      $begingroup$


      Can stress that is related to a threat of survival of a population of animals or plants in some environment, like due to hunger, thirst, fear from predators, etc..; results in an increase in average mutation rate in germline cells of individuals of that population, thereby increasing the likelihood of producing heritable trait(s) that might be beneficial to that population in combating those adverse survival conditions in that environment?



      In bacteria this is known as "Stress Induced Mutagensis"



      Is there something comparable to that in animals and plants?










      share|improve this question











      $endgroup$




      Can stress that is related to a threat of survival of a population of animals or plants in some environment, like due to hunger, thirst, fear from predators, etc..; results in an increase in average mutation rate in germline cells of individuals of that population, thereby increasing the likelihood of producing heritable trait(s) that might be beneficial to that population in combating those adverse survival conditions in that environment?



      In bacteria this is known as "Stress Induced Mutagensis"



      Is there something comparable to that in animals and plants?







      evolution mutations sexual-reproduction






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited yesterday







      Zuhair Al-Johar

















      asked yesterday









      Zuhair Al-JoharZuhair Al-Johar

      2409




      2409




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Well... since I can't delete this accepted answer... it's going to be a reverse ferret, to some extent. One 2014 review by Ram and Hadany lists a fair number of SIM occurrences outside of bacteria:




          Stress-induced mutagenesis (SIM)—the increase of mutation rates in stressed or maladapted individuals—has been demonstrated in several species, including both prokaryotes and eukaryotes. [...] SIM has also been observed in yeast, algae, nematodes, flies and human cancer cells.




          The one for algae (Goho and Bell, 2000) appears/claims to have been the fist:




          Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes.




          The paper cited for Drosophila, Sharp and Agrawal (2012)




          Our results show that mutation rates are sensitive to genetic stress, such that individuals with low-quality genotypes will produce offspring of even lower genetic quality, in a mutational positive feedback loop. This type of variation in mutation rate is expected to alter a variety of predictions based on mutation load theory and accelerate adaptation to new environments. Positive mutational feedback could affect human health by increasing the rate of germline mutation, and possibly somatic mutation, in individuals of poor health because of genetic or environmental stress.




          Clearly this one is quite bold in extrapolating its findings.



          And long story short, the paper on nematodes (Matsuba et al., 2012) finds a temperature dependant mutation rate.



          What seems to be the weak point in these paper, and perhaps why a more critical review of Lynch et al., 2016 of SIM doesn't mention them, is that no explicit mediating mechanism appear to have been identified in these studies on eukaryotes. In bacteria (e.g. the paper linked by the OP) how SIM works inside the cell is pretty well understood, there are in fact several mechanisms that all respond (convergently) to various forms of stress.



          There's an acknowledgement (in the Drosophila) paper, that such mechanisms in eukaryotes might differ from bacteria




          The sources and mechanisms underlying this variation have been best studied in microbes, but the sources of variation in microbes may differ from those in multicellular eukaryotes for several reasons. [...]



          In animals, mutation rate varies among genotypes, although the functional sources of this variation are unknown. [...]




          It does go on into some theories how it might work.



          As for yeast, Rodriguez et al. (2012)




          Mismatch repair (MMR) is a major DNA repair pathway in cells from all branches of life that removes replication errors in a strand-specific manner, such that mismatched nucleotides are preferentially removed from the newly replicated strand of DNA. Here we demonstrate a role for MMR in helping create new phenotypes in nondividing cells. We show that mispairs in yeast that escape MMR during replication can later be subject to MMR activity in a replication strand-independent manner in nondividing cells, resulting in either fully wild-type or mutant DNA sequence. In one case, this activity is responsible for what appears to be adaptive mutation. This replication strand-independent MMR activity could contribute to the formation of tumors arising in nondividing cells and could also contribute to mutagenesis observed during somatic hypermutation of Ig genes.




          I guess a weak point of this paper vis-a-vis of SIM (which they only mention in passing) is that it's not obvious in their setup what the stress was. Basically they saw (adaptive) mutation-rate change (in response to the environment), but they don't pinpoint what exactly they think the stressor was. So this paper is a way the reverse of the other three I, i.e. the mechanism is clear, but stress is not.






          share|improve this answer











          $endgroup$












          • $begingroup$
            but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
            $endgroup$
            – Zuhair Al-Johar
            yesterday











          • $begingroup$
            see: medicalnewstoday.com/articles/277543.php
            $endgroup$
            – Zuhair Al-Johar
            yesterday










          • $begingroup$
            @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
            $endgroup$
            – Fizz
            yesterday











          • $begingroup$
            I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
            $endgroup$
            – terdon
            yesterday






          • 1




            $begingroup$
            @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
            $endgroup$
            – Cell
            yesterday












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "375"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fbiology.stackexchange.com%2fquestions%2f82346%2fcan-threat-to-survival-increase-mutation-rates-in-germline-cells%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          Well... since I can't delete this accepted answer... it's going to be a reverse ferret, to some extent. One 2014 review by Ram and Hadany lists a fair number of SIM occurrences outside of bacteria:




          Stress-induced mutagenesis (SIM)—the increase of mutation rates in stressed or maladapted individuals—has been demonstrated in several species, including both prokaryotes and eukaryotes. [...] SIM has also been observed in yeast, algae, nematodes, flies and human cancer cells.




          The one for algae (Goho and Bell, 2000) appears/claims to have been the fist:




          Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes.




          The paper cited for Drosophila, Sharp and Agrawal (2012)




          Our results show that mutation rates are sensitive to genetic stress, such that individuals with low-quality genotypes will produce offspring of even lower genetic quality, in a mutational positive feedback loop. This type of variation in mutation rate is expected to alter a variety of predictions based on mutation load theory and accelerate adaptation to new environments. Positive mutational feedback could affect human health by increasing the rate of germline mutation, and possibly somatic mutation, in individuals of poor health because of genetic or environmental stress.




          Clearly this one is quite bold in extrapolating its findings.



          And long story short, the paper on nematodes (Matsuba et al., 2012) finds a temperature dependant mutation rate.



          What seems to be the weak point in these paper, and perhaps why a more critical review of Lynch et al., 2016 of SIM doesn't mention them, is that no explicit mediating mechanism appear to have been identified in these studies on eukaryotes. In bacteria (e.g. the paper linked by the OP) how SIM works inside the cell is pretty well understood, there are in fact several mechanisms that all respond (convergently) to various forms of stress.



          There's an acknowledgement (in the Drosophila) paper, that such mechanisms in eukaryotes might differ from bacteria




          The sources and mechanisms underlying this variation have been best studied in microbes, but the sources of variation in microbes may differ from those in multicellular eukaryotes for several reasons. [...]



          In animals, mutation rate varies among genotypes, although the functional sources of this variation are unknown. [...]




          It does go on into some theories how it might work.



          As for yeast, Rodriguez et al. (2012)




          Mismatch repair (MMR) is a major DNA repair pathway in cells from all branches of life that removes replication errors in a strand-specific manner, such that mismatched nucleotides are preferentially removed from the newly replicated strand of DNA. Here we demonstrate a role for MMR in helping create new phenotypes in nondividing cells. We show that mispairs in yeast that escape MMR during replication can later be subject to MMR activity in a replication strand-independent manner in nondividing cells, resulting in either fully wild-type or mutant DNA sequence. In one case, this activity is responsible for what appears to be adaptive mutation. This replication strand-independent MMR activity could contribute to the formation of tumors arising in nondividing cells and could also contribute to mutagenesis observed during somatic hypermutation of Ig genes.




          I guess a weak point of this paper vis-a-vis of SIM (which they only mention in passing) is that it's not obvious in their setup what the stress was. Basically they saw (adaptive) mutation-rate change (in response to the environment), but they don't pinpoint what exactly they think the stressor was. So this paper is a way the reverse of the other three I, i.e. the mechanism is clear, but stress is not.






          share|improve this answer











          $endgroup$












          • $begingroup$
            but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
            $endgroup$
            – Zuhair Al-Johar
            yesterday











          • $begingroup$
            see: medicalnewstoday.com/articles/277543.php
            $endgroup$
            – Zuhair Al-Johar
            yesterday










          • $begingroup$
            @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
            $endgroup$
            – Fizz
            yesterday











          • $begingroup$
            I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
            $endgroup$
            – terdon
            yesterday






          • 1




            $begingroup$
            @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
            $endgroup$
            – Cell
            yesterday
















          3












          $begingroup$

          Well... since I can't delete this accepted answer... it's going to be a reverse ferret, to some extent. One 2014 review by Ram and Hadany lists a fair number of SIM occurrences outside of bacteria:




          Stress-induced mutagenesis (SIM)—the increase of mutation rates in stressed or maladapted individuals—has been demonstrated in several species, including both prokaryotes and eukaryotes. [...] SIM has also been observed in yeast, algae, nematodes, flies and human cancer cells.




          The one for algae (Goho and Bell, 2000) appears/claims to have been the fist:




          Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes.




          The paper cited for Drosophila, Sharp and Agrawal (2012)




          Our results show that mutation rates are sensitive to genetic stress, such that individuals with low-quality genotypes will produce offspring of even lower genetic quality, in a mutational positive feedback loop. This type of variation in mutation rate is expected to alter a variety of predictions based on mutation load theory and accelerate adaptation to new environments. Positive mutational feedback could affect human health by increasing the rate of germline mutation, and possibly somatic mutation, in individuals of poor health because of genetic or environmental stress.




          Clearly this one is quite bold in extrapolating its findings.



          And long story short, the paper on nematodes (Matsuba et al., 2012) finds a temperature dependant mutation rate.



          What seems to be the weak point in these paper, and perhaps why a more critical review of Lynch et al., 2016 of SIM doesn't mention them, is that no explicit mediating mechanism appear to have been identified in these studies on eukaryotes. In bacteria (e.g. the paper linked by the OP) how SIM works inside the cell is pretty well understood, there are in fact several mechanisms that all respond (convergently) to various forms of stress.



          There's an acknowledgement (in the Drosophila) paper, that such mechanisms in eukaryotes might differ from bacteria




          The sources and mechanisms underlying this variation have been best studied in microbes, but the sources of variation in microbes may differ from those in multicellular eukaryotes for several reasons. [...]



          In animals, mutation rate varies among genotypes, although the functional sources of this variation are unknown. [...]




          It does go on into some theories how it might work.



          As for yeast, Rodriguez et al. (2012)




          Mismatch repair (MMR) is a major DNA repair pathway in cells from all branches of life that removes replication errors in a strand-specific manner, such that mismatched nucleotides are preferentially removed from the newly replicated strand of DNA. Here we demonstrate a role for MMR in helping create new phenotypes in nondividing cells. We show that mispairs in yeast that escape MMR during replication can later be subject to MMR activity in a replication strand-independent manner in nondividing cells, resulting in either fully wild-type or mutant DNA sequence. In one case, this activity is responsible for what appears to be adaptive mutation. This replication strand-independent MMR activity could contribute to the formation of tumors arising in nondividing cells and could also contribute to mutagenesis observed during somatic hypermutation of Ig genes.




          I guess a weak point of this paper vis-a-vis of SIM (which they only mention in passing) is that it's not obvious in their setup what the stress was. Basically they saw (adaptive) mutation-rate change (in response to the environment), but they don't pinpoint what exactly they think the stressor was. So this paper is a way the reverse of the other three I, i.e. the mechanism is clear, but stress is not.






          share|improve this answer











          $endgroup$












          • $begingroup$
            but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
            $endgroup$
            – Zuhair Al-Johar
            yesterday











          • $begingroup$
            see: medicalnewstoday.com/articles/277543.php
            $endgroup$
            – Zuhair Al-Johar
            yesterday










          • $begingroup$
            @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
            $endgroup$
            – Fizz
            yesterday











          • $begingroup$
            I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
            $endgroup$
            – terdon
            yesterday






          • 1




            $begingroup$
            @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
            $endgroup$
            – Cell
            yesterday














          3












          3








          3





          $begingroup$

          Well... since I can't delete this accepted answer... it's going to be a reverse ferret, to some extent. One 2014 review by Ram and Hadany lists a fair number of SIM occurrences outside of bacteria:




          Stress-induced mutagenesis (SIM)—the increase of mutation rates in stressed or maladapted individuals—has been demonstrated in several species, including both prokaryotes and eukaryotes. [...] SIM has also been observed in yeast, algae, nematodes, flies and human cancer cells.




          The one for algae (Goho and Bell, 2000) appears/claims to have been the fist:




          Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes.




          The paper cited for Drosophila, Sharp and Agrawal (2012)




          Our results show that mutation rates are sensitive to genetic stress, such that individuals with low-quality genotypes will produce offspring of even lower genetic quality, in a mutational positive feedback loop. This type of variation in mutation rate is expected to alter a variety of predictions based on mutation load theory and accelerate adaptation to new environments. Positive mutational feedback could affect human health by increasing the rate of germline mutation, and possibly somatic mutation, in individuals of poor health because of genetic or environmental stress.




          Clearly this one is quite bold in extrapolating its findings.



          And long story short, the paper on nematodes (Matsuba et al., 2012) finds a temperature dependant mutation rate.



          What seems to be the weak point in these paper, and perhaps why a more critical review of Lynch et al., 2016 of SIM doesn't mention them, is that no explicit mediating mechanism appear to have been identified in these studies on eukaryotes. In bacteria (e.g. the paper linked by the OP) how SIM works inside the cell is pretty well understood, there are in fact several mechanisms that all respond (convergently) to various forms of stress.



          There's an acknowledgement (in the Drosophila) paper, that such mechanisms in eukaryotes might differ from bacteria




          The sources and mechanisms underlying this variation have been best studied in microbes, but the sources of variation in microbes may differ from those in multicellular eukaryotes for several reasons. [...]



          In animals, mutation rate varies among genotypes, although the functional sources of this variation are unknown. [...]




          It does go on into some theories how it might work.



          As for yeast, Rodriguez et al. (2012)




          Mismatch repair (MMR) is a major DNA repair pathway in cells from all branches of life that removes replication errors in a strand-specific manner, such that mismatched nucleotides are preferentially removed from the newly replicated strand of DNA. Here we demonstrate a role for MMR in helping create new phenotypes in nondividing cells. We show that mispairs in yeast that escape MMR during replication can later be subject to MMR activity in a replication strand-independent manner in nondividing cells, resulting in either fully wild-type or mutant DNA sequence. In one case, this activity is responsible for what appears to be adaptive mutation. This replication strand-independent MMR activity could contribute to the formation of tumors arising in nondividing cells and could also contribute to mutagenesis observed during somatic hypermutation of Ig genes.




          I guess a weak point of this paper vis-a-vis of SIM (which they only mention in passing) is that it's not obvious in their setup what the stress was. Basically they saw (adaptive) mutation-rate change (in response to the environment), but they don't pinpoint what exactly they think the stressor was. So this paper is a way the reverse of the other three I, i.e. the mechanism is clear, but stress is not.






          share|improve this answer











          $endgroup$



          Well... since I can't delete this accepted answer... it's going to be a reverse ferret, to some extent. One 2014 review by Ram and Hadany lists a fair number of SIM occurrences outside of bacteria:




          Stress-induced mutagenesis (SIM)—the increase of mutation rates in stressed or maladapted individuals—has been demonstrated in several species, including both prokaryotes and eukaryotes. [...] SIM has also been observed in yeast, algae, nematodes, flies and human cancer cells.




          The one for algae (Goho and Bell, 2000) appears/claims to have been the fist:




          Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes.




          The paper cited for Drosophila, Sharp and Agrawal (2012)




          Our results show that mutation rates are sensitive to genetic stress, such that individuals with low-quality genotypes will produce offspring of even lower genetic quality, in a mutational positive feedback loop. This type of variation in mutation rate is expected to alter a variety of predictions based on mutation load theory and accelerate adaptation to new environments. Positive mutational feedback could affect human health by increasing the rate of germline mutation, and possibly somatic mutation, in individuals of poor health because of genetic or environmental stress.




          Clearly this one is quite bold in extrapolating its findings.



          And long story short, the paper on nematodes (Matsuba et al., 2012) finds a temperature dependant mutation rate.



          What seems to be the weak point in these paper, and perhaps why a more critical review of Lynch et al., 2016 of SIM doesn't mention them, is that no explicit mediating mechanism appear to have been identified in these studies on eukaryotes. In bacteria (e.g. the paper linked by the OP) how SIM works inside the cell is pretty well understood, there are in fact several mechanisms that all respond (convergently) to various forms of stress.



          There's an acknowledgement (in the Drosophila) paper, that such mechanisms in eukaryotes might differ from bacteria




          The sources and mechanisms underlying this variation have been best studied in microbes, but the sources of variation in microbes may differ from those in multicellular eukaryotes for several reasons. [...]



          In animals, mutation rate varies among genotypes, although the functional sources of this variation are unknown. [...]




          It does go on into some theories how it might work.



          As for yeast, Rodriguez et al. (2012)




          Mismatch repair (MMR) is a major DNA repair pathway in cells from all branches of life that removes replication errors in a strand-specific manner, such that mismatched nucleotides are preferentially removed from the newly replicated strand of DNA. Here we demonstrate a role for MMR in helping create new phenotypes in nondividing cells. We show that mispairs in yeast that escape MMR during replication can later be subject to MMR activity in a replication strand-independent manner in nondividing cells, resulting in either fully wild-type or mutant DNA sequence. In one case, this activity is responsible for what appears to be adaptive mutation. This replication strand-independent MMR activity could contribute to the formation of tumors arising in nondividing cells and could also contribute to mutagenesis observed during somatic hypermutation of Ig genes.




          I guess a weak point of this paper vis-a-vis of SIM (which they only mention in passing) is that it's not obvious in their setup what the stress was. Basically they saw (adaptive) mutation-rate change (in response to the environment), but they don't pinpoint what exactly they think the stressor was. So this paper is a way the reverse of the other three I, i.e. the mechanism is clear, but stress is not.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited yesterday

























          answered yesterday









          FizzFizz

          984316




          984316











          • $begingroup$
            but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
            $endgroup$
            – Zuhair Al-Johar
            yesterday











          • $begingroup$
            see: medicalnewstoday.com/articles/277543.php
            $endgroup$
            – Zuhair Al-Johar
            yesterday










          • $begingroup$
            @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
            $endgroup$
            – Fizz
            yesterday











          • $begingroup$
            I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
            $endgroup$
            – terdon
            yesterday






          • 1




            $begingroup$
            @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
            $endgroup$
            – Cell
            yesterday

















          • $begingroup$
            but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
            $endgroup$
            – Zuhair Al-Johar
            yesterday











          • $begingroup$
            see: medicalnewstoday.com/articles/277543.php
            $endgroup$
            – Zuhair Al-Johar
            yesterday










          • $begingroup$
            @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
            $endgroup$
            – Fizz
            yesterday











          • $begingroup$
            I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
            $endgroup$
            – terdon
            yesterday






          • 1




            $begingroup$
            @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
            $endgroup$
            – Cell
            yesterday
















          $begingroup$
          but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
          $endgroup$
          – Zuhair Al-Johar
          yesterday





          $begingroup$
          but in humans stress has been identified with abnormal sperm morphology, so this might be related to an increment in mutation rate in the male germline cells which would most likely have a bad side to it, which we happen to observe, since most mutations are deleterious. But that might not be the complete story, there may be a possibility of a beneficial aspect that escaped observation, i.e. a beneficial mutation that might arise from the possibly higher rate of mutation.
          $endgroup$
          – Zuhair Al-Johar
          yesterday













          $begingroup$
          see: medicalnewstoday.com/articles/277543.php
          $endgroup$
          – Zuhair Al-Johar
          yesterday




          $begingroup$
          see: medicalnewstoday.com/articles/277543.php
          $endgroup$
          – Zuhair Al-Johar
          yesterday












          $begingroup$
          @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
          $endgroup$
          – Fizz
          yesterday





          $begingroup$
          @ZuhairAl-Johar: (psychological) stress at the level of organism doesn't necessarily translate in the kind of cell-level stress needed to produce [more] mutagenesis. At least I don't know of evidence for that link. The article you indicated talks about lower testosterone etc. as the effect of organism-level stress; it's not clear that that has any effect on mutagenesis, and I think it probably doesn't have such an effect.
          $endgroup$
          – Fizz
          yesterday













          $begingroup$
          I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
          $endgroup$
          – terdon
          yesterday




          $begingroup$
          I don't have access to the review, but are you sure it supports such a broad claim? For instance, we've known for several years that Alu translocation rate is increased in response to heat stress. I am not entirely sure if the OP would include this sort of stress, but still.
          $endgroup$
          – terdon
          yesterday




          1




          1




          $begingroup$
          @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
          $endgroup$
          – Cell
          yesterday





          $begingroup$
          @ZuhairAl-Johar What do you mean by heat stress? The feeling that your surrounding is too hot? Or the gametes being exposed to high temperatures? Because in your examples you describe stress as more psychological state of mind (ex. fear), but in these it's the latter i.e. I believe the cell upregulates or loses regulation of DNA mutation processes in direct response to heat.
          $endgroup$
          – Cell
          yesterday


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Biology Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fbiology.stackexchange.com%2fquestions%2f82346%2fcan-threat-to-survival-increase-mutation-rates-in-germline-cells%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wikipedia:Vital articles Мазмуну Biography - Өмүр баян Philosophy and psychology - Философия жана психология Religion - Дин Social sciences - Коомдук илимдер Language and literature - Тил жана адабият Science - Илим Technology - Технология Arts and recreation - Искусство жана эс алуу History and geography - Тарых жана география Навигация менюсу

          Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

          Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070