Prove the alternating sum of a decreasing sequence converging to $0$ is Cauchy.Suppose for all positive integers $n$, $|x_n-y_n|< frac1n$ Prove that $(x_n)$ is also Cauchy.Proof check for completenessProve that $d_n$ is a Cauchy sequence in $mathbbR$Prove $aX_n +bY_n$ is a Cauchy Sequence.Prove a sequence is a Cauchy and thus convergentIf $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyLet $x_n$ be a Cauchy sequence of rational numbers. Define a new sequence $y_n$ by $y_n = (x_n)(x_n+1)$. Show that $y_n$ is a CS.Let $x_n$ be a Cauchy sequence of real numbers, prove that a new sequence $y_n$, with $y_n$=$x_n^frac13$, is also a Cauchy sequence.$x_n rightarrow x$ iff the modified sequence is Cauchy

Adjacent DEM color matching in QGIS

What is a smasher?

What is the solution to this metapuzzle from a university puzzling column?

Copy previous line to current line from text file

Will 700 more planes a day fly because of the Heathrow expansion?

Pressure inside an infinite ocean?

Where is the documentation for this ex command?

Why do people keep telling me that I am a bad photographer?

Causes of bimodal distributions when bootstrapping a meta-analysis model

Emotional immaturity of comic-book version of superhero Shazam

How do inspiraling black holes get closer?

Why wasn't the Night King naked in S08E03?

Wrong answer from DSolve when solving a differential equation

Understanding trademark infringements in a world where many dictionary words are trademarks?

Is there an idiom that support the idea that "inflation is bad"?

Why aren't nationalizations in Russia described as socialist?

How should I tell my manager I'm not paying for an optional after work event I'm not going to?

Are the Night's Watch still required?

How to adjust tikz picture so it fits to current size of a table cell?

How can I roleplay a follower-type character when I as a player have a leader-type personality?

What does this wavy downward arrow preceding a piano chord mean?

Can my 2 children 10 and 12 Travel to the USA on expired American Passports? They are US citizens

Out of scope work duties and resignation

Is there an official reason for not adding a post-credits scene?



Prove the alternating sum of a decreasing sequence converging to $0$ is Cauchy.


Suppose for all positive integers $n$, $|x_n-y_n|< frac1n$ Prove that $(x_n)$ is also Cauchy.Proof check for completenessProve that $d_n$ is a Cauchy sequence in $mathbbR$Prove $aX_n +bY_n$ is a Cauchy Sequence.Prove a sequence is a Cauchy and thus convergentIf $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyLet $x_n$ be a Cauchy sequence of rational numbers. Define a new sequence $y_n$ by $y_n = (x_n)(x_n+1)$. Show that $y_n$ is a CS.Let $x_n$ be a Cauchy sequence of real numbers, prove that a new sequence $y_n$, with $y_n$=$x_n^frac13$, is also a Cauchy sequence.$x_n rightarrow x$ iff the modified sequence is Cauchy













2












$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    Apr 25 at 1:17










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 1:37










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    Apr 25 at 4:05







  • 1




    $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    Apr 25 at 5:54
















2












$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    Apr 25 at 1:17










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 1:37










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    Apr 25 at 4:05







  • 1




    $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    Apr 25 at 5:54














2












2








2


2



$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question











$endgroup$




Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.







real-analysis cauchy-sequences






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 25 at 6:53









Asaf Karagila

310k33442776




310k33442776










asked Apr 25 at 0:51









oranjioranji

616




616







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    Apr 25 at 1:17










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 1:37










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    Apr 25 at 4:05







  • 1




    $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    Apr 25 at 5:54













  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    Apr 25 at 1:17










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 1:37










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    Apr 25 at 4:05







  • 1




    $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    Apr 25 at 5:54








1




1




$begingroup$
Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
$endgroup$
– Robert Shore
Apr 25 at 1:17




$begingroup$
Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
$endgroup$
– Robert Shore
Apr 25 at 1:17












$begingroup$
@RobertShore is my answer okay?
$endgroup$
– Subhasis Biswas
Apr 25 at 1:37




$begingroup$
@RobertShore is my answer okay?
$endgroup$
– Subhasis Biswas
Apr 25 at 1:37












$begingroup$
@RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
$endgroup$
– oranji
Apr 25 at 4:05





$begingroup$
@RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
$endgroup$
– oranji
Apr 25 at 4:05





1




1




$begingroup$
I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
$endgroup$
– Robert Shore
Apr 25 at 5:54





$begingroup$
I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
$endgroup$
– Robert Shore
Apr 25 at 5:54











2 Answers
2






active

oldest

votes


















4












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:06






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    Apr 25 at 4:07


















4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    Apr 25 at 4:02










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:05











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3201256%2fprove-the-alternating-sum-of-a-decreasing-sequence-converging-to-0-is-cauchy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:06






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    Apr 25 at 4:07















4












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:06






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    Apr 25 at 4:07













4












4








4





$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$



To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 25 at 4:22

























answered Apr 25 at 4:05









trancelocationtrancelocation

14.8k1929




14.8k1929











  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:06






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    Apr 25 at 4:07
















  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:06






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    Apr 25 at 4:07















$begingroup$
This is exactly what I was about to do.
$endgroup$
– Subhasis Biswas
Apr 25 at 4:06




$begingroup$
This is exactly what I was about to do.
$endgroup$
– Subhasis Biswas
Apr 25 at 4:06




1




1




$begingroup$
@SubhasisBiswas So, I did it for you :-D
$endgroup$
– trancelocation
Apr 25 at 4:07




$begingroup$
@SubhasisBiswas So, I did it for you :-D
$endgroup$
– trancelocation
Apr 25 at 4:07











4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    Apr 25 at 4:02










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:05















4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    Apr 25 at 4:02










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:05













4












4








4





$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$



This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 25 at 1:30









Subhasis BiswasSubhasis Biswas

655512




655512











  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    Apr 25 at 4:02










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:05
















  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    Apr 25 at 4:02










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:05















$begingroup$
I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
$endgroup$
– oranji
Apr 25 at 4:02




$begingroup$
I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
$endgroup$
– oranji
Apr 25 at 4:02












$begingroup$
I'll edit this answer.
$endgroup$
– Subhasis Biswas
Apr 25 at 4:05




$begingroup$
I'll edit this answer.
$endgroup$
– Subhasis Biswas
Apr 25 at 4:05

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3201256%2fprove-the-alternating-sum-of-a-decreasing-sequence-converging-to-0-is-cauchy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wikipedia:Vital articles Мазмуну Biography - Өмүр баян Philosophy and psychology - Философия жана психология Religion - Дин Social sciences - Коомдук илимдер Language and literature - Тил жана адабият Science - Илим Technology - Технология Arts and recreation - Искусство жана эс алуу History and geography - Тарых жана география Навигация менюсу

Bruxelas-Capital Índice Historia | Composición | Situación lingüística | Clima | Cidades irmandadas | Notas | Véxase tamén | Menú de navegacióneO uso das linguas en Bruxelas e a situación do neerlandés"Rexión de Bruxelas Capital"o orixinalSitio da rexiónPáxina de Bruselas no sitio da Oficina de Promoción Turística de Valonia e BruxelasMapa Interactivo da Rexión de Bruxelas-CapitaleeWorldCat332144929079854441105155190212ID28008674080552-90000 0001 0666 3698n94104302ID540940339365017018237

What should I write in an apology letter, since I have decided not to join a company after accepting an offer letterShould I keep looking after accepting a job offer?What should I do when I've been verbally told I would get an offer letter, but still haven't gotten one after 4 weeks?Do I accept an offer from a company that I am not likely to join?New job hasn't confirmed starting date and I want to give current employer as much notice as possibleHow should I address my manager in my resignation letter?HR delayed background verification, now jobless as resignedNo email communication after accepting a formal written offer. How should I phrase the call?What should I do if after receiving a verbal offer letter I am informed that my written job offer is put on hold due to some internal issues?Should I inform the current employer that I am about to resign within 1-2 weeks since I have signed the offer letter and waiting for visa?What company will do, if I send their offer letter to another company