Prove the alternating sum of a decreasing sequence converging to $0$ is Cauchy.Suppose for all positive integers $n$, $|x_n-y_n|< frac1n$ Prove that $(x_n)$ is also Cauchy.Proof check for completenessProve that $d_n$ is a Cauchy sequence in $mathbbR$Prove $aX_n +bY_n$ is a Cauchy Sequence.Prove a sequence is a Cauchy and thus convergentIf $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyLet $x_n$ be a Cauchy sequence of rational numbers. Define a new sequence $y_n$ by $y_n = (x_n)(x_n+1)$. Show that $y_n$ is a CS.Let $x_n$ be a Cauchy sequence of real numbers, prove that a new sequence $y_n$, with $y_n$=$x_n^frac13$, is also a Cauchy sequence.$x_n rightarrow x$ iff the modified sequence is Cauchy

Adjacent DEM color matching in QGIS

What is a smasher?

What is the solution to this metapuzzle from a university puzzling column?

Copy previous line to current line from text file

Will 700 more planes a day fly because of the Heathrow expansion?

Pressure inside an infinite ocean?

Where is the documentation for this ex command?

Why do people keep telling me that I am a bad photographer?

Causes of bimodal distributions when bootstrapping a meta-analysis model

Emotional immaturity of comic-book version of superhero Shazam

How do inspiraling black holes get closer?

Why wasn't the Night King naked in S08E03?

Wrong answer from DSolve when solving a differential equation

Understanding trademark infringements in a world where many dictionary words are trademarks?

Is there an idiom that support the idea that "inflation is bad"?

Why aren't nationalizations in Russia described as socialist?

How should I tell my manager I'm not paying for an optional after work event I'm not going to?

Are the Night's Watch still required?

How to adjust tikz picture so it fits to current size of a table cell?

How can I roleplay a follower-type character when I as a player have a leader-type personality?

What does this wavy downward arrow preceding a piano chord mean?

Can my 2 children 10 and 12 Travel to the USA on expired American Passports? They are US citizens

Out of scope work duties and resignation

Is there an official reason for not adding a post-credits scene?



Prove the alternating sum of a decreasing sequence converging to $0$ is Cauchy.


Suppose for all positive integers $n$, $|x_n-y_n|< frac1n$ Prove that $(x_n)$ is also Cauchy.Proof check for completenessProve that $d_n$ is a Cauchy sequence in $mathbbR$Prove $aX_n +bY_n$ is a Cauchy Sequence.Prove a sequence is a Cauchy and thus convergentIf $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyLet $x_n$ be a Cauchy sequence of rational numbers. Define a new sequence $y_n$ by $y_n = (x_n)(x_n+1)$. Show that $y_n$ is a CS.Let $x_n$ be a Cauchy sequence of real numbers, prove that a new sequence $y_n$, with $y_n$=$x_n^frac13$, is also a Cauchy sequence.$x_n rightarrow x$ iff the modified sequence is Cauchy













2












$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    Apr 25 at 1:17










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 1:37










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    Apr 25 at 4:05







  • 1




    $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    Apr 25 at 5:54
















2












$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    Apr 25 at 1:17










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 1:37










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    Apr 25 at 4:05







  • 1




    $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    Apr 25 at 5:54














2












2








2


2



$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question











$endgroup$




Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.







real-analysis cauchy-sequences






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 25 at 6:53









Asaf Karagila

310k33442776




310k33442776










asked Apr 25 at 0:51









oranjioranji

616




616







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    Apr 25 at 1:17










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 1:37










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    Apr 25 at 4:05







  • 1




    $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    Apr 25 at 5:54













  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    Apr 25 at 1:17










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 1:37










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    Apr 25 at 4:05







  • 1




    $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    Apr 25 at 5:54








1




1




$begingroup$
Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
$endgroup$
– Robert Shore
Apr 25 at 1:17




$begingroup$
Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
$endgroup$
– Robert Shore
Apr 25 at 1:17












$begingroup$
@RobertShore is my answer okay?
$endgroup$
– Subhasis Biswas
Apr 25 at 1:37




$begingroup$
@RobertShore is my answer okay?
$endgroup$
– Subhasis Biswas
Apr 25 at 1:37












$begingroup$
@RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
$endgroup$
– oranji
Apr 25 at 4:05





$begingroup$
@RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
$endgroup$
– oranji
Apr 25 at 4:05





1




1




$begingroup$
I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
$endgroup$
– Robert Shore
Apr 25 at 5:54





$begingroup$
I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
$endgroup$
– Robert Shore
Apr 25 at 5:54











2 Answers
2






active

oldest

votes


















4












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:06






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    Apr 25 at 4:07


















4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    Apr 25 at 4:02










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:05











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3201256%2fprove-the-alternating-sum-of-a-decreasing-sequence-converging-to-0-is-cauchy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:06






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    Apr 25 at 4:07















4












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:06






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    Apr 25 at 4:07













4












4








4





$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$



To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 25 at 4:22

























answered Apr 25 at 4:05









trancelocationtrancelocation

14.8k1929




14.8k1929











  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:06






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    Apr 25 at 4:07
















  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:06






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    Apr 25 at 4:07















$begingroup$
This is exactly what I was about to do.
$endgroup$
– Subhasis Biswas
Apr 25 at 4:06




$begingroup$
This is exactly what I was about to do.
$endgroup$
– Subhasis Biswas
Apr 25 at 4:06




1




1




$begingroup$
@SubhasisBiswas So, I did it for you :-D
$endgroup$
– trancelocation
Apr 25 at 4:07




$begingroup$
@SubhasisBiswas So, I did it for you :-D
$endgroup$
– trancelocation
Apr 25 at 4:07











4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    Apr 25 at 4:02










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:05















4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    Apr 25 at 4:02










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:05













4












4








4





$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$



This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 25 at 1:30









Subhasis BiswasSubhasis Biswas

655512




655512











  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    Apr 25 at 4:02










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:05
















  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    Apr 25 at 4:02










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    Apr 25 at 4:05















$begingroup$
I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
$endgroup$
– oranji
Apr 25 at 4:02




$begingroup$
I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
$endgroup$
– oranji
Apr 25 at 4:02












$begingroup$
I'll edit this answer.
$endgroup$
– Subhasis Biswas
Apr 25 at 4:05




$begingroup$
I'll edit this answer.
$endgroup$
– Subhasis Biswas
Apr 25 at 4:05

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3201256%2fprove-the-alternating-sum-of-a-decreasing-sequence-converging-to-0-is-cauchy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020