How was the airlock installed on the Space Shuttle mid deck?How much fuel was used for a Space Shuttle launch?Was the Space Shuttle ever rotated to induce artificial gravity?What was the purpose for which the shuttle mockup Explorer aka Independence was constructed?Cost-effective Space Shuttle: was it feasible?How was the Centaur stage fueled in the Space Shuttle?Was the Space Shuttle TPS technology ever state secret?At what point was nose wheel steering “added” to the Space Shuttle design?How was “Space Ram” (instant ramen noodles) prepared and eaten on the Space Shuttle?How was the thrust for the STS-94 launch and other space shuttle launches balanced?How was the Space Shuttle boat tail transported back to the west coast?

A player is constantly pestering me about rules, what do I do as a DM?

Confusion about multiple information Sets

Why is a blank required between "[[" and "-e xxx" in ksh?

Generate and Graph the Recamán Sequence

How should I behave to assure my friends that I am not after their money?

Three column layout

Do sudoku answers always have a single minimal clue set?

If a high rpm motor is run at lower rpm, will it produce more torque?

Children's short story about material that accelerates away from gravity

How exactly is a normal force exerted, at the molecular level?

Dold-Kan correspondence in the category of symmetric spectra

What do you call the action of someone tackling a stronger person?

Dual statement category theory

Could Sauron have read Tom Bombadil's mind if Tom had held the Palantir?

Disabling automatic add after resolving git conflict

Do we or do we not observe (measure) superpositions all the time?

How would a order of Monks that renounce their names communicate effectively?

Cross over of arrows in a complex diagram

How to determine what is the correct level of detail when modelling?

What is the best delay to use between characters sent to the serial port

Did Chinese school textbook maps (c. 1951) "depict China as stretching even into the central Asian republics"?

How do I find and plot the intersection of these three surfaces?

If my Scout rogue has used his full movement on his turn, can he later use the reaction from the Skirmisher feature to move again?

Does anycast addressing add additional latency in any way?



How was the airlock installed on the Space Shuttle mid deck?


How much fuel was used for a Space Shuttle launch?Was the Space Shuttle ever rotated to induce artificial gravity?What was the purpose for which the shuttle mockup Explorer aka Independence was constructed?Cost-effective Space Shuttle: was it feasible?How was the Centaur stage fueled in the Space Shuttle?Was the Space Shuttle TPS technology ever state secret?At what point was nose wheel steering “added” to the Space Shuttle design?How was “Space Ram” (instant ramen noodles) prepared and eaten on the Space Shuttle?How was the thrust for the STS-94 launch and other space shuttle launches balanced?How was the Space Shuttle boat tail transported back to the west coast?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








9












$begingroup$


I just finished the Haynes manual on the Space Shuttle, and it mentions that on some missions, an airlock was carried on the mid-deck area.



I'm more familiar with the airlock carried in the payload bay on other missions.



So apparently, it was possible to install/remove the airlock from the mid deck. How was this done? Was it small enough to be inserted through a hatch, or was it disassembled?



The mid deck looks rather cramped with an airlock in the middle, was this configuration used often?










share|improve this question









$endgroup$







  • 1




    $begingroup$
    more details but no ground-operations info about how to move it form inside to outside
    $endgroup$
    – JCRM
    Jun 9 at 19:47


















9












$begingroup$


I just finished the Haynes manual on the Space Shuttle, and it mentions that on some missions, an airlock was carried on the mid-deck area.



I'm more familiar with the airlock carried in the payload bay on other missions.



So apparently, it was possible to install/remove the airlock from the mid deck. How was this done? Was it small enough to be inserted through a hatch, or was it disassembled?



The mid deck looks rather cramped with an airlock in the middle, was this configuration used often?










share|improve this question









$endgroup$







  • 1




    $begingroup$
    more details but no ground-operations info about how to move it form inside to outside
    $endgroup$
    – JCRM
    Jun 9 at 19:47














9












9








9


1



$begingroup$


I just finished the Haynes manual on the Space Shuttle, and it mentions that on some missions, an airlock was carried on the mid-deck area.



I'm more familiar with the airlock carried in the payload bay on other missions.



So apparently, it was possible to install/remove the airlock from the mid deck. How was this done? Was it small enough to be inserted through a hatch, or was it disassembled?



The mid deck looks rather cramped with an airlock in the middle, was this configuration used often?










share|improve this question









$endgroup$




I just finished the Haynes manual on the Space Shuttle, and it mentions that on some missions, an airlock was carried on the mid-deck area.



I'm more familiar with the airlock carried in the payload bay on other missions.



So apparently, it was possible to install/remove the airlock from the mid deck. How was this done? Was it small enough to be inserted through a hatch, or was it disassembled?



The mid deck looks rather cramped with an airlock in the middle, was this configuration used often?







space-shuttle






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Jun 9 at 17:30









HobbesHobbes

99.3k2 gold badges288 silver badges442 bronze badges




99.3k2 gold badges288 silver badges442 bronze badges







  • 1




    $begingroup$
    more details but no ground-operations info about how to move it form inside to outside
    $endgroup$
    – JCRM
    Jun 9 at 19:47













  • 1




    $begingroup$
    more details but no ground-operations info about how to move it form inside to outside
    $endgroup$
    – JCRM
    Jun 9 at 19:47








1




1




$begingroup$
more details but no ground-operations info about how to move it form inside to outside
$endgroup$
– JCRM
Jun 9 at 19:47





$begingroup$
more details but no ground-operations info about how to move it form inside to outside
$endgroup$
– JCRM
Jun 9 at 19:47











1 Answer
1






active

oldest

votes


















10












$begingroup$

The "factory" / original config for the Orbiters was the internal airlock. All the Orbiters were delivered this way, and all flew their early flights with it. (All missions flew with an airlock, because EVA repair was considered a level of redundancy for certain failures.)



The first mission to use the external airlock configuration was STS-89, Endeavour's 12th flight, in January 1998.1



By the end of the program only Columbia still retained the internal airlock. The external airlock was used to mount the docking system in the payload bay, and all the other Orbiters were flying to the ISS. Sadly, Columbia was too heavy to perform those missions (although one was planned for her, after some weigh reduction mods).



The airlock would not fit through the hatch; it had to be taken apart and removed in pieces, and was a non-trivial task. I can't find a good source to prove this last fact, but I'm 99% sure that once an Orbiter's airlock went external, it was never moved back inside. Think of the external airlock as an upgrade rather than a reconfigurable option.



Source: Space Shuttle Missions Summary & personal experience



1Docking missions prior to the installation of the external airlock used an airlock-like volume mounted in the bay. It was called the "ODS" or "ODS Shell" for Orbiter Docking System, which is confusing because that's also what the actual docking mechanism was called sometimes. A short tunnel segment with a hatch in it connected the ODS shell to the internal airlock. Here's an example from the STS-86 Flight Requirements Document (STS-86 was a Mir docking mission).



enter image description here



Why wasn't an "ODS Shell" an "external airlock"? It was the exact same structure, but it was not considered to be an airlock because it wasn't fitted out with the panels and connections that were needed to service the suits.




The airlock has two display and control panels. The airlock control
panels are basically split to provide either ECLSS or avionics
operations. The ECLSS panel provides the interface for the SCU waste
and potable water, liquid cooling and ventilation garment cooling
water, EMU hardline communications, EMU power and oxygen supply. The
avionics panel includes the airlock lighting, airlock audio system and
EMU power and battery recharge controls. The avionics panel is located
on the right side of the cabin airlock hatch and the ECLSS panel is on
the left side. The airlock panels are designated AW18H, AW18D and
AW18A on the left side and AW82H, AW82D and AW82B on the right side.
The ECLSS panel is divided into EMU 1 functions on the right side and
EMU 2 functions on the left.



Airlock communications are provided with the orbiter audio system at
airlock panel AW82D, where connectors for the headset interface units
and the EMUs are located at airlock panel AW18D, the airlock audio
terminal. The HIUs are inserted in the crew member communications
carrier unit connectors on airlock panel AW82D. The CCUs are also
known as the Snoopy caps. The adjacent two-position switches labeled
CCU1 and CCU2 power enable transmit functions only, as reception is
normal as soon as the HIUs are plugged in. The EMU 1 and EMU 2
connectors on the panel to which the SCU is connected include contacts
for EMU hardline communications with the orbiter before EVA. Panel
AW18D contains displays and controls used to select access to and
control the volume of various audio signals. Control of the airlock
audio functions can be transferred to the middeck ATUs on panel M042F
by placing the control knob to the middeck position.




Source






share|improve this answer











$endgroup$















    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "508"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f36660%2fhow-was-the-airlock-installed-on-the-space-shuttle-mid-deck%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    The "factory" / original config for the Orbiters was the internal airlock. All the Orbiters were delivered this way, and all flew their early flights with it. (All missions flew with an airlock, because EVA repair was considered a level of redundancy for certain failures.)



    The first mission to use the external airlock configuration was STS-89, Endeavour's 12th flight, in January 1998.1



    By the end of the program only Columbia still retained the internal airlock. The external airlock was used to mount the docking system in the payload bay, and all the other Orbiters were flying to the ISS. Sadly, Columbia was too heavy to perform those missions (although one was planned for her, after some weigh reduction mods).



    The airlock would not fit through the hatch; it had to be taken apart and removed in pieces, and was a non-trivial task. I can't find a good source to prove this last fact, but I'm 99% sure that once an Orbiter's airlock went external, it was never moved back inside. Think of the external airlock as an upgrade rather than a reconfigurable option.



    Source: Space Shuttle Missions Summary & personal experience



    1Docking missions prior to the installation of the external airlock used an airlock-like volume mounted in the bay. It was called the "ODS" or "ODS Shell" for Orbiter Docking System, which is confusing because that's also what the actual docking mechanism was called sometimes. A short tunnel segment with a hatch in it connected the ODS shell to the internal airlock. Here's an example from the STS-86 Flight Requirements Document (STS-86 was a Mir docking mission).



    enter image description here



    Why wasn't an "ODS Shell" an "external airlock"? It was the exact same structure, but it was not considered to be an airlock because it wasn't fitted out with the panels and connections that were needed to service the suits.




    The airlock has two display and control panels. The airlock control
    panels are basically split to provide either ECLSS or avionics
    operations. The ECLSS panel provides the interface for the SCU waste
    and potable water, liquid cooling and ventilation garment cooling
    water, EMU hardline communications, EMU power and oxygen supply. The
    avionics panel includes the airlock lighting, airlock audio system and
    EMU power and battery recharge controls. The avionics panel is located
    on the right side of the cabin airlock hatch and the ECLSS panel is on
    the left side. The airlock panels are designated AW18H, AW18D and
    AW18A on the left side and AW82H, AW82D and AW82B on the right side.
    The ECLSS panel is divided into EMU 1 functions on the right side and
    EMU 2 functions on the left.



    Airlock communications are provided with the orbiter audio system at
    airlock panel AW82D, where connectors for the headset interface units
    and the EMUs are located at airlock panel AW18D, the airlock audio
    terminal. The HIUs are inserted in the crew member communications
    carrier unit connectors on airlock panel AW82D. The CCUs are also
    known as the Snoopy caps. The adjacent two-position switches labeled
    CCU1 and CCU2 power enable transmit functions only, as reception is
    normal as soon as the HIUs are plugged in. The EMU 1 and EMU 2
    connectors on the panel to which the SCU is connected include contacts
    for EMU hardline communications with the orbiter before EVA. Panel
    AW18D contains displays and controls used to select access to and
    control the volume of various audio signals. Control of the airlock
    audio functions can be transferred to the middeck ATUs on panel M042F
    by placing the control knob to the middeck position.




    Source






    share|improve this answer











    $endgroup$

















      10












      $begingroup$

      The "factory" / original config for the Orbiters was the internal airlock. All the Orbiters were delivered this way, and all flew their early flights with it. (All missions flew with an airlock, because EVA repair was considered a level of redundancy for certain failures.)



      The first mission to use the external airlock configuration was STS-89, Endeavour's 12th flight, in January 1998.1



      By the end of the program only Columbia still retained the internal airlock. The external airlock was used to mount the docking system in the payload bay, and all the other Orbiters were flying to the ISS. Sadly, Columbia was too heavy to perform those missions (although one was planned for her, after some weigh reduction mods).



      The airlock would not fit through the hatch; it had to be taken apart and removed in pieces, and was a non-trivial task. I can't find a good source to prove this last fact, but I'm 99% sure that once an Orbiter's airlock went external, it was never moved back inside. Think of the external airlock as an upgrade rather than a reconfigurable option.



      Source: Space Shuttle Missions Summary & personal experience



      1Docking missions prior to the installation of the external airlock used an airlock-like volume mounted in the bay. It was called the "ODS" or "ODS Shell" for Orbiter Docking System, which is confusing because that's also what the actual docking mechanism was called sometimes. A short tunnel segment with a hatch in it connected the ODS shell to the internal airlock. Here's an example from the STS-86 Flight Requirements Document (STS-86 was a Mir docking mission).



      enter image description here



      Why wasn't an "ODS Shell" an "external airlock"? It was the exact same structure, but it was not considered to be an airlock because it wasn't fitted out with the panels and connections that were needed to service the suits.




      The airlock has two display and control panels. The airlock control
      panels are basically split to provide either ECLSS or avionics
      operations. The ECLSS panel provides the interface for the SCU waste
      and potable water, liquid cooling and ventilation garment cooling
      water, EMU hardline communications, EMU power and oxygen supply. The
      avionics panel includes the airlock lighting, airlock audio system and
      EMU power and battery recharge controls. The avionics panel is located
      on the right side of the cabin airlock hatch and the ECLSS panel is on
      the left side. The airlock panels are designated AW18H, AW18D and
      AW18A on the left side and AW82H, AW82D and AW82B on the right side.
      The ECLSS panel is divided into EMU 1 functions on the right side and
      EMU 2 functions on the left.



      Airlock communications are provided with the orbiter audio system at
      airlock panel AW82D, where connectors for the headset interface units
      and the EMUs are located at airlock panel AW18D, the airlock audio
      terminal. The HIUs are inserted in the crew member communications
      carrier unit connectors on airlock panel AW82D. The CCUs are also
      known as the Snoopy caps. The adjacent two-position switches labeled
      CCU1 and CCU2 power enable transmit functions only, as reception is
      normal as soon as the HIUs are plugged in. The EMU 1 and EMU 2
      connectors on the panel to which the SCU is connected include contacts
      for EMU hardline communications with the orbiter before EVA. Panel
      AW18D contains displays and controls used to select access to and
      control the volume of various audio signals. Control of the airlock
      audio functions can be transferred to the middeck ATUs on panel M042F
      by placing the control knob to the middeck position.




      Source






      share|improve this answer











      $endgroup$















        10












        10








        10





        $begingroup$

        The "factory" / original config for the Orbiters was the internal airlock. All the Orbiters were delivered this way, and all flew their early flights with it. (All missions flew with an airlock, because EVA repair was considered a level of redundancy for certain failures.)



        The first mission to use the external airlock configuration was STS-89, Endeavour's 12th flight, in January 1998.1



        By the end of the program only Columbia still retained the internal airlock. The external airlock was used to mount the docking system in the payload bay, and all the other Orbiters were flying to the ISS. Sadly, Columbia was too heavy to perform those missions (although one was planned for her, after some weigh reduction mods).



        The airlock would not fit through the hatch; it had to be taken apart and removed in pieces, and was a non-trivial task. I can't find a good source to prove this last fact, but I'm 99% sure that once an Orbiter's airlock went external, it was never moved back inside. Think of the external airlock as an upgrade rather than a reconfigurable option.



        Source: Space Shuttle Missions Summary & personal experience



        1Docking missions prior to the installation of the external airlock used an airlock-like volume mounted in the bay. It was called the "ODS" or "ODS Shell" for Orbiter Docking System, which is confusing because that's also what the actual docking mechanism was called sometimes. A short tunnel segment with a hatch in it connected the ODS shell to the internal airlock. Here's an example from the STS-86 Flight Requirements Document (STS-86 was a Mir docking mission).



        enter image description here



        Why wasn't an "ODS Shell" an "external airlock"? It was the exact same structure, but it was not considered to be an airlock because it wasn't fitted out with the panels and connections that were needed to service the suits.




        The airlock has two display and control panels. The airlock control
        panels are basically split to provide either ECLSS or avionics
        operations. The ECLSS panel provides the interface for the SCU waste
        and potable water, liquid cooling and ventilation garment cooling
        water, EMU hardline communications, EMU power and oxygen supply. The
        avionics panel includes the airlock lighting, airlock audio system and
        EMU power and battery recharge controls. The avionics panel is located
        on the right side of the cabin airlock hatch and the ECLSS panel is on
        the left side. The airlock panels are designated AW18H, AW18D and
        AW18A on the left side and AW82H, AW82D and AW82B on the right side.
        The ECLSS panel is divided into EMU 1 functions on the right side and
        EMU 2 functions on the left.



        Airlock communications are provided with the orbiter audio system at
        airlock panel AW82D, where connectors for the headset interface units
        and the EMUs are located at airlock panel AW18D, the airlock audio
        terminal. The HIUs are inserted in the crew member communications
        carrier unit connectors on airlock panel AW82D. The CCUs are also
        known as the Snoopy caps. The adjacent two-position switches labeled
        CCU1 and CCU2 power enable transmit functions only, as reception is
        normal as soon as the HIUs are plugged in. The EMU 1 and EMU 2
        connectors on the panel to which the SCU is connected include contacts
        for EMU hardline communications with the orbiter before EVA. Panel
        AW18D contains displays and controls used to select access to and
        control the volume of various audio signals. Control of the airlock
        audio functions can be transferred to the middeck ATUs on panel M042F
        by placing the control knob to the middeck position.




        Source






        share|improve this answer











        $endgroup$



        The "factory" / original config for the Orbiters was the internal airlock. All the Orbiters were delivered this way, and all flew their early flights with it. (All missions flew with an airlock, because EVA repair was considered a level of redundancy for certain failures.)



        The first mission to use the external airlock configuration was STS-89, Endeavour's 12th flight, in January 1998.1



        By the end of the program only Columbia still retained the internal airlock. The external airlock was used to mount the docking system in the payload bay, and all the other Orbiters were flying to the ISS. Sadly, Columbia was too heavy to perform those missions (although one was planned for her, after some weigh reduction mods).



        The airlock would not fit through the hatch; it had to be taken apart and removed in pieces, and was a non-trivial task. I can't find a good source to prove this last fact, but I'm 99% sure that once an Orbiter's airlock went external, it was never moved back inside. Think of the external airlock as an upgrade rather than a reconfigurable option.



        Source: Space Shuttle Missions Summary & personal experience



        1Docking missions prior to the installation of the external airlock used an airlock-like volume mounted in the bay. It was called the "ODS" or "ODS Shell" for Orbiter Docking System, which is confusing because that's also what the actual docking mechanism was called sometimes. A short tunnel segment with a hatch in it connected the ODS shell to the internal airlock. Here's an example from the STS-86 Flight Requirements Document (STS-86 was a Mir docking mission).



        enter image description here



        Why wasn't an "ODS Shell" an "external airlock"? It was the exact same structure, but it was not considered to be an airlock because it wasn't fitted out with the panels and connections that were needed to service the suits.




        The airlock has two display and control panels. The airlock control
        panels are basically split to provide either ECLSS or avionics
        operations. The ECLSS panel provides the interface for the SCU waste
        and potable water, liquid cooling and ventilation garment cooling
        water, EMU hardline communications, EMU power and oxygen supply. The
        avionics panel includes the airlock lighting, airlock audio system and
        EMU power and battery recharge controls. The avionics panel is located
        on the right side of the cabin airlock hatch and the ECLSS panel is on
        the left side. The airlock panels are designated AW18H, AW18D and
        AW18A on the left side and AW82H, AW82D and AW82B on the right side.
        The ECLSS panel is divided into EMU 1 functions on the right side and
        EMU 2 functions on the left.



        Airlock communications are provided with the orbiter audio system at
        airlock panel AW82D, where connectors for the headset interface units
        and the EMUs are located at airlock panel AW18D, the airlock audio
        terminal. The HIUs are inserted in the crew member communications
        carrier unit connectors on airlock panel AW82D. The CCUs are also
        known as the Snoopy caps. The adjacent two-position switches labeled
        CCU1 and CCU2 power enable transmit functions only, as reception is
        normal as soon as the HIUs are plugged in. The EMU 1 and EMU 2
        connectors on the panel to which the SCU is connected include contacts
        for EMU hardline communications with the orbiter before EVA. Panel
        AW18D contains displays and controls used to select access to and
        control the volume of various audio signals. Control of the airlock
        audio functions can be transferred to the middeck ATUs on panel M042F
        by placing the control knob to the middeck position.




        Source







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Jun 10 at 0:49

























        answered Jun 9 at 20:36









        Organic MarbleOrganic Marble

        66.4k4 gold badges186 silver badges284 bronze badges




        66.4k4 gold badges186 silver badges284 bronze badges



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Space Exploration Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f36660%2fhow-was-the-airlock-installed-on-the-space-shuttle-mid-deck%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020