Under what conditions does the function C = f(A,B) satisfy H(C|A) = H(B)? The Next CEO of Stack OverflowMeasuring entropy for a table (e.g., SQL results)Information of a stream of bitsCan a transcendental number like $e$ or $pi$ be compressed as not algorithmically random?How to compare conditional entropy and mutual information?One-shot Private Randomness ExtractorFind minimum conditional entropyFinding the dichotomy that maximizes information gain for a classifier?Higher order empirical entropy is not the entropy of the empirical distribution?Conceptual overview: Self-information, Mutual information, uncertainty, entropyHow realistic is the i.i.d assumption in the definition of Shannon's entropy?
How do I get the green key off the shelf in the Dobby level of Lego Harry Potter 2?
Customer Requests (Sometimes) Drive Me Bonkers!
Why doesn't a table tennis ball float on the surface? How do we calculate buoyancy here?
How do we know the LHC results are robust?
What is the point of a new vote on May's deal when the indicative votes suggest she will not win?
Can I equip Skullclamp on a creature I am sacrificing?
Which organization defines CJK Unified Ideographs?
What is the purpose of the Evocation wizard's Potent Cantrip feature?
How do I go from 300 unfinished/half written blog posts, to published posts?
Why does C# sound extremely flat when saxophone is tuned to G?
Unreliable Magic - Is it worth it?
Should I tutor a student who I know has cheated on their homework?
Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?
Is HostGator storing my password in plaintext?
Inappropriate reference requests from Journal reviewers
Can the Reverse Gravity spell affect the Meteor Swarm spell?
What makes a siege story/plot interesting?
Return the Closest Prime Number
Is it my responsibility to learn a new technology in my own time my employer wants to implement?
Only print output after finding pattern
If I blow insulation everywhere in my attic except the door trap, will heat escape through it?
Does it take more energy to get to Venus or to Mars?
Visit to the USA with ESTA approved before trip to Iran
What does "Its cash flow is deeply negative" mean?
Under what conditions does the function C = f(A,B) satisfy H(C|A) = H(B)?
The Next CEO of Stack OverflowMeasuring entropy for a table (e.g., SQL results)Information of a stream of bitsCan a transcendental number like $e$ or $pi$ be compressed as not algorithmically random?How to compare conditional entropy and mutual information?One-shot Private Randomness ExtractorFind minimum conditional entropyFinding the dichotomy that maximizes information gain for a classifier?Higher order empirical entropy is not the entropy of the empirical distribution?Conceptual overview: Self-information, Mutual information, uncertainty, entropyHow realistic is the i.i.d assumption in the definition of Shannon's entropy?
$begingroup$
Suppose we have a function $f$,
$$
C = f(A,B),
$$
where $A$, $B$ and $C$ are random variables.
I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:
$$
H(C|A) = H(B),
$$
where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.
Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above is true.
information-theory
$endgroup$
add a comment |
$begingroup$
Suppose we have a function $f$,
$$
C = f(A,B),
$$
where $A$, $B$ and $C$ are random variables.
I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:
$$
H(C|A) = H(B),
$$
where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.
Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above is true.
information-theory
$endgroup$
1
$begingroup$
The function needs to be injective with respect to its second argument.
$endgroup$
– Yuval Filmus
20 hours ago
$begingroup$
@YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
$endgroup$
– hklel
20 hours ago
add a comment |
$begingroup$
Suppose we have a function $f$,
$$
C = f(A,B),
$$
where $A$, $B$ and $C$ are random variables.
I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:
$$
H(C|A) = H(B),
$$
where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.
Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above is true.
information-theory
$endgroup$
Suppose we have a function $f$,
$$
C = f(A,B),
$$
where $A$, $B$ and $C$ are random variables.
I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:
$$
H(C|A) = H(B),
$$
where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.
Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above is true.
information-theory
information-theory
asked 21 hours ago
hklelhklel
1255
1255
1
$begingroup$
The function needs to be injective with respect to its second argument.
$endgroup$
– Yuval Filmus
20 hours ago
$begingroup$
@YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
$endgroup$
– hklel
20 hours ago
add a comment |
1
$begingroup$
The function needs to be injective with respect to its second argument.
$endgroup$
– Yuval Filmus
20 hours ago
$begingroup$
@YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
$endgroup$
– hklel
20 hours ago
1
1
$begingroup$
The function needs to be injective with respect to its second argument.
$endgroup$
– Yuval Filmus
20 hours ago
$begingroup$
The function needs to be injective with respect to its second argument.
$endgroup$
– Yuval Filmus
20 hours ago
$begingroup$
@YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
$endgroup$
– hklel
20 hours ago
$begingroup$
@YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
$endgroup$
– hklel
20 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.
Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$
Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.
$endgroup$
1
$begingroup$
$H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
$endgroup$
– xskxzr
19 hours ago
3
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
add a comment |
$begingroup$
Note
beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign
so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.
For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.
$endgroup$
2
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
$begingroup$
@EmilJeřábek Thanks, fixed.
$endgroup$
– xskxzr
18 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106156%2funder-what-conditions-does-the-function-c-fa-b-satisfy-hca-hb%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.
Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$
Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.
$endgroup$
1
$begingroup$
$H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
$endgroup$
– xskxzr
19 hours ago
3
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
add a comment |
$begingroup$
The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.
Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$
Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.
$endgroup$
1
$begingroup$
$H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
$endgroup$
– xskxzr
19 hours ago
3
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
add a comment |
$begingroup$
The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.
Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$
Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.
$endgroup$
The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.
Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$
Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.
edited 18 hours ago
answered 20 hours ago
Yuval FilmusYuval Filmus
195k14184348
195k14184348
1
$begingroup$
$H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
$endgroup$
– xskxzr
19 hours ago
3
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
add a comment |
1
$begingroup$
$H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
$endgroup$
– xskxzr
19 hours ago
3
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
1
1
$begingroup$
$H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
$endgroup$
– xskxzr
19 hours ago
$begingroup$
$H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
$endgroup$
– xskxzr
19 hours ago
3
3
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
add a comment |
$begingroup$
Note
beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign
so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.
For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.
$endgroup$
2
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
$begingroup$
@EmilJeřábek Thanks, fixed.
$endgroup$
– xskxzr
18 hours ago
add a comment |
$begingroup$
Note
beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign
so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.
For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.
$endgroup$
2
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
$begingroup$
@EmilJeřábek Thanks, fixed.
$endgroup$
– xskxzr
18 hours ago
add a comment |
$begingroup$
Note
beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign
so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.
For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.
$endgroup$
Note
beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign
so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.
For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.
edited 18 hours ago
answered 19 hours ago
xskxzrxskxzr
4,03521033
4,03521033
2
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
$begingroup$
@EmilJeřábek Thanks, fixed.
$endgroup$
– xskxzr
18 hours ago
add a comment |
2
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
$begingroup$
@EmilJeřábek Thanks, fixed.
$endgroup$
– xskxzr
18 hours ago
2
2
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago
$begingroup$
@EmilJeřábek Thanks, fixed.
$endgroup$
– xskxzr
18 hours ago
$begingroup$
@EmilJeřábek Thanks, fixed.
$endgroup$
– xskxzr
18 hours ago
add a comment |
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106156%2funder-what-conditions-does-the-function-c-fa-b-satisfy-hca-hb%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The function needs to be injective with respect to its second argument.
$endgroup$
– Yuval Filmus
20 hours ago
$begingroup$
@YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
$endgroup$
– hklel
20 hours ago