Continuity at a point in terms of closure The 2019 Stack Overflow Developer Survey Results Are InSet Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.

Short story: child made less intelligent and less attractive

How to support a colleague who finds meetings extremely tiring?

Pokemon Turn Based battle (Python)

What is this sharp, curved notch on my knife for?

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Why isn't the circumferential light around the M87 black hole's event horizon symmetric?

How to type this arrow in math mode?

Correct punctuation for showing a character's confusion

How much of the clove should I use when using big garlic heads?

RequirePermission not working

Can withdrawing asylum be illegal?

How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?

What is the motivation for a law requiring 2 parties to consent for recording a conversation

Button changing its text & action. Good or terrible?

What force causes entropy to increase?

A word that means fill it to the required quantity

Ubuntu Server install with full GUI

Are spiders unable to hurt humans, especially very small spiders?

Why are there uneven bright areas in this photo of black hole?

What do hard-Brexiteers want with respect to the Irish border?

Why didn't the Event Horizon Telescope team mention Sagittarius A*?

Can an undergraduate be advised by a professor who is very far away?

Is it safe to harvest rainwater that fell on solar panels?

If my opponent casts Ultimate Price on my Phantasmal Bear, can I save it by casting Snap or Curfew?



Continuity at a point in terms of closure



The 2019 Stack Overflow Developer Survey Results Are InSet Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.










4












$begingroup$


If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.



I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.










share|cite|improve this question









$endgroup$
















    4












    $begingroup$


    If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.



    I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



    Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.










    share|cite|improve this question









    $endgroup$














      4












      4








      4





      $begingroup$


      If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.



      I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



      Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.










      share|cite|improve this question









      $endgroup$




      If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.



      I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



      Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.







      general-topology continuity






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 7 at 16:29









      BlondCaféBlondCafé

      364




      364




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
            We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



            Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.



            It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$

                Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






                  share|cite|improve this answer









                  $endgroup$



                  Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 7 at 17:06









                  guchiheguchihe

                  21919




                  21919





















                      2












                      $begingroup$

                      It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                      We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                      Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.



                      It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






                      share|cite|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                        We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                        Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.



                        It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






                        share|cite|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                          We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                          Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.



                          It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






                          share|cite|improve this answer









                          $endgroup$



                          It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                          We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                          Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.



                          It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Apr 7 at 17:07









                          Henno BrandsmaHenno Brandsma

                          116k349127




                          116k349127



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              RemoteApp sporadic failureWindows 2008 RemoteAPP client disconnects within a matter of minutesWhat is the minimum version of RDP supported by Server 2012 RDS?How to configure a Remoteapp server to increase stabilityMicrosoft RemoteApp Active SessionRDWeb TS connection broken for some users post RemoteApp certificate changeRemote Desktop Licensing, RemoteAPPRDS 2012 R2 some users are not able to logon after changed date and time on Connection BrokersWhat happens during Remote Desktop logon, and is there any logging?After installing RDS on WinServer 2016 I still can only connect with two users?RD Connection via RDGW to Session host is not connecting

                              How to write a 12-bar blues melodyI-IV-V blues progressionHow to play the bridges in a standard blues progressionHow does Gdim7 fit in C# minor?question on a certain chord progressionMusicology of Melody12 bar blues, spread rhythm: alternative to 6th chord to avoid finger stretchChord progressions/ Root key/ MelodiesHow to put chords (POP-EDM) under a given lead vocal melody (starting from a good knowledge in music theory)Are there “rules” for improvising with the minor pentatonic scale over 12-bar shuffle?Confusion about blues scale and chords

                              Esgonzo ibérico Índice Descrición Distribución Hábitat Ameazas Notas Véxase tamén "Acerca dos nomes dos anfibios e réptiles galegos""Chalcides bedriagai"Chalcides bedriagai en Carrascal, L. M. Salvador, A. (Eds). Enciclopedia virtual de los vertebrados españoles. Museo Nacional de Ciencias Naturales, Madrid. España.Fotos