Continuity at a point in terms of closure The 2019 Stack Overflow Developer Survey Results Are InSet Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.
Short story: child made less intelligent and less attractive
How to support a colleague who finds meetings extremely tiring?
Pokemon Turn Based battle (Python)
What is this sharp, curved notch on my knife for?
Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?
Why isn't the circumferential light around the M87 black hole's event horizon symmetric?
How to type this arrow in math mode?
Correct punctuation for showing a character's confusion
How much of the clove should I use when using big garlic heads?
RequirePermission not working
Can withdrawing asylum be illegal?
How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?
What is the motivation for a law requiring 2 parties to consent for recording a conversation
Button changing its text & action. Good or terrible?
What force causes entropy to increase?
A word that means fill it to the required quantity
Ubuntu Server install with full GUI
Are spiders unable to hurt humans, especially very small spiders?
Why are there uneven bright areas in this photo of black hole?
What do hard-Brexiteers want with respect to the Irish border?
Why didn't the Event Horizon Telescope team mention Sagittarius A*?
Can an undergraduate be advised by a professor who is very far away?
Is it safe to harvest rainwater that fell on solar panels?
If my opponent casts Ultimate Price on my Phantasmal Bear, can I save it by casting Snap or Curfew?
Continuity at a point in terms of closure
The 2019 Stack Overflow Developer Survey Results Are InSet Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
$endgroup$
add a comment |
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
$endgroup$
add a comment |
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
$endgroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverlineA implies f(x_0)inoverlinef(A)$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^-1(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverlineA$, we have $Acap f^-1(V)neqvarnothing$. Let $xin Acap f^-1(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverlinef(A)$.
general-topology continuity
general-topology continuity
asked Apr 7 at 16:29
BlondCaféBlondCafé
364
364
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overlinef^-1(Ysetminus V)$, then $f(x_o)in overlinef(f^-1(Ysetminus V))subset overlineYsetminus V= Ysetminus V$, a contradiction, so $x_0 notin overlinef^-1(Ysetminus V)$. Then, if $U = Xsetminus overlinef^-1(Ysetminus V)$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
answered Apr 7 at 17:06
guchiheguchihe
21919
21919
add a comment |
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^-1[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overlinef^-1[Ysetminus V]$ and so the assumption on $f$ would imply that $y=f(x_0) in overlinef[f^-1[Ysetminus V]]$. But $f[f^-1[B]] subseteq B$ for any $B$ so we'd deduce that $y in overlineYsetminus V = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
answered Apr 7 at 17:07
Henno BrandsmaHenno Brandsma
116k349127
116k349127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown