Symplectic equivalent of commuting matrices The 2019 Stack Overflow Developer Survey Results Are InProving “almost all matrices over C are diagonalizable”.Polar decomposition for quaternionic matrices?Characterizing symplectic matrices relative to a partial Iwasawa decompositionApproximating commuting matrices by commuting diagonalizable matricesSymplectic block-diagonalization of a real symmetric Hamiltonian matrixDo skew symmetric matrices ever naturally represent linear transformations?Constant symplectic structureCenter of matricesDiagonalization of real symmetric matrices with symplectic matricesIs every stable matrix orthogonally similar to a $D$-skew-symmetric matrix?

Symplectic equivalent of commuting matrices



The 2019 Stack Overflow Developer Survey Results Are InProving “almost all matrices over C are diagonalizable”.Polar decomposition for quaternionic matrices?Characterizing symplectic matrices relative to a partial Iwasawa decompositionApproximating commuting matrices by commuting diagonalizable matricesSymplectic block-diagonalization of a real symmetric Hamiltonian matrixDo skew symmetric matrices ever naturally represent linear transformations?Constant symplectic structureCenter of matricesDiagonalization of real symmetric matrices with symplectic matricesIs every stable matrix orthogonally similar to a $D$-skew-symmetric matrix?










9












$begingroup$


It is well known what happens if two real symmetric matrices commute, i.e. if we have two matrices $A$ and $B$ such that $A=A^T$, $B=B^T$ and $AB=BA$. The answer is given in terms of diagonalization: there is a unitary matrix $M$ such that $A$ and $B$ are transformed into $A'=M^TAM$ and $B'=M^TBM$, and both $A'$ and $B'$ are diagonal.



Here I'm asking if any analogous property holds in the following case.



$A$ and $B$ are symmetric, i.e. $A=A^T$ and $B=B^T$. The following property holds:



$$AOmega B=BOmega A$$ (1)



where $Omega$ is the matrix defining the symplectic bilinear form (skew-symmetric, nonsingular, and hollow), e.g.:



$$Omega = beginbmatrix0 & 0 & 1 & 0\0 & 0 & 0 & 1\
-1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 endbmatrix$$



The allowed transformations are the symplectic matrices $M$, i.e. matrices for which the following holds:



$$M^TOmega M=Omega$$



The transformed matrices are $A'=M^TAM$ and $B'=M^TBM$.



My question is if there is a form into which $A'$ and $B'$ can be put, by means of a suitable $M$, provided that Eq.1 holds.










share|cite|improve this question







New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
    $endgroup$
    – Teo Banica
    Apr 7 at 17:24






  • 1




    $begingroup$
    For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
    $endgroup$
    – Christian Remling
    Apr 7 at 18:09






  • 3




    $begingroup$
    If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
    $endgroup$
    – MTyson
    Apr 8 at 0:18










  • $begingroup$
    Interesting! Could you please make this an answer, and maybe extend it a bit? For example, I still do not understand if this applies when $A$ is symmetric, i.e. $A=A^T$.
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 9:52






  • 2




    $begingroup$
    @DorianoBrogioli --- the symmetry of $A$ ensures that $Omega A$ is Hamiltonian (symplectic skew-symmetric), which is the condition needed for Lemma 17 mentioned by MTyson to apply.
    $endgroup$
    – Carlo Beenakker
    Apr 8 at 10:09















9












$begingroup$


It is well known what happens if two real symmetric matrices commute, i.e. if we have two matrices $A$ and $B$ such that $A=A^T$, $B=B^T$ and $AB=BA$. The answer is given in terms of diagonalization: there is a unitary matrix $M$ such that $A$ and $B$ are transformed into $A'=M^TAM$ and $B'=M^TBM$, and both $A'$ and $B'$ are diagonal.



Here I'm asking if any analogous property holds in the following case.



$A$ and $B$ are symmetric, i.e. $A=A^T$ and $B=B^T$. The following property holds:



$$AOmega B=BOmega A$$ (1)



where $Omega$ is the matrix defining the symplectic bilinear form (skew-symmetric, nonsingular, and hollow), e.g.:



$$Omega = beginbmatrix0 & 0 & 1 & 0\0 & 0 & 0 & 1\
-1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 endbmatrix$$



The allowed transformations are the symplectic matrices $M$, i.e. matrices for which the following holds:



$$M^TOmega M=Omega$$



The transformed matrices are $A'=M^TAM$ and $B'=M^TBM$.



My question is if there is a form into which $A'$ and $B'$ can be put, by means of a suitable $M$, provided that Eq.1 holds.










share|cite|improve this question







New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
    $endgroup$
    – Teo Banica
    Apr 7 at 17:24






  • 1




    $begingroup$
    For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
    $endgroup$
    – Christian Remling
    Apr 7 at 18:09






  • 3




    $begingroup$
    If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
    $endgroup$
    – MTyson
    Apr 8 at 0:18










  • $begingroup$
    Interesting! Could you please make this an answer, and maybe extend it a bit? For example, I still do not understand if this applies when $A$ is symmetric, i.e. $A=A^T$.
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 9:52






  • 2




    $begingroup$
    @DorianoBrogioli --- the symmetry of $A$ ensures that $Omega A$ is Hamiltonian (symplectic skew-symmetric), which is the condition needed for Lemma 17 mentioned by MTyson to apply.
    $endgroup$
    – Carlo Beenakker
    Apr 8 at 10:09













9












9








9


1



$begingroup$


It is well known what happens if two real symmetric matrices commute, i.e. if we have two matrices $A$ and $B$ such that $A=A^T$, $B=B^T$ and $AB=BA$. The answer is given in terms of diagonalization: there is a unitary matrix $M$ such that $A$ and $B$ are transformed into $A'=M^TAM$ and $B'=M^TBM$, and both $A'$ and $B'$ are diagonal.



Here I'm asking if any analogous property holds in the following case.



$A$ and $B$ are symmetric, i.e. $A=A^T$ and $B=B^T$. The following property holds:



$$AOmega B=BOmega A$$ (1)



where $Omega$ is the matrix defining the symplectic bilinear form (skew-symmetric, nonsingular, and hollow), e.g.:



$$Omega = beginbmatrix0 & 0 & 1 & 0\0 & 0 & 0 & 1\
-1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 endbmatrix$$



The allowed transformations are the symplectic matrices $M$, i.e. matrices for which the following holds:



$$M^TOmega M=Omega$$



The transformed matrices are $A'=M^TAM$ and $B'=M^TBM$.



My question is if there is a form into which $A'$ and $B'$ can be put, by means of a suitable $M$, provided that Eq.1 holds.










share|cite|improve this question







New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




It is well known what happens if two real symmetric matrices commute, i.e. if we have two matrices $A$ and $B$ such that $A=A^T$, $B=B^T$ and $AB=BA$. The answer is given in terms of diagonalization: there is a unitary matrix $M$ such that $A$ and $B$ are transformed into $A'=M^TAM$ and $B'=M^TBM$, and both $A'$ and $B'$ are diagonal.



Here I'm asking if any analogous property holds in the following case.



$A$ and $B$ are symmetric, i.e. $A=A^T$ and $B=B^T$. The following property holds:



$$AOmega B=BOmega A$$ (1)



where $Omega$ is the matrix defining the symplectic bilinear form (skew-symmetric, nonsingular, and hollow), e.g.:



$$Omega = beginbmatrix0 & 0 & 1 & 0\0 & 0 & 0 & 1\
-1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 endbmatrix$$



The allowed transformations are the symplectic matrices $M$, i.e. matrices for which the following holds:



$$M^TOmega M=Omega$$



The transformed matrices are $A'=M^TAM$ and $B'=M^TBM$.



My question is if there is a form into which $A'$ and $B'$ can be put, by means of a suitable $M$, provided that Eq.1 holds.







linear-algebra sg.symplectic-geometry






share|cite|improve this question







New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Apr 7 at 17:05









Doriano BrogioliDoriano Brogioli

483




483




New contributor




Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Doriano Brogioli is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 2




    $begingroup$
    No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
    $endgroup$
    – Teo Banica
    Apr 7 at 17:24






  • 1




    $begingroup$
    For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
    $endgroup$
    – Christian Remling
    Apr 7 at 18:09






  • 3




    $begingroup$
    If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
    $endgroup$
    – MTyson
    Apr 8 at 0:18










  • $begingroup$
    Interesting! Could you please make this an answer, and maybe extend it a bit? For example, I still do not understand if this applies when $A$ is symmetric, i.e. $A=A^T$.
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 9:52






  • 2




    $begingroup$
    @DorianoBrogioli --- the symmetry of $A$ ensures that $Omega A$ is Hamiltonian (symplectic skew-symmetric), which is the condition needed for Lemma 17 mentioned by MTyson to apply.
    $endgroup$
    – Carlo Beenakker
    Apr 8 at 10:09












  • 2




    $begingroup$
    No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
    $endgroup$
    – Teo Banica
    Apr 7 at 17:24






  • 1




    $begingroup$
    For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
    $endgroup$
    – Christian Remling
    Apr 7 at 18:09






  • 3




    $begingroup$
    If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
    $endgroup$
    – MTyson
    Apr 8 at 0:18










  • $begingroup$
    Interesting! Could you please make this an answer, and maybe extend it a bit? For example, I still do not understand if this applies when $A$ is symmetric, i.e. $A=A^T$.
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 9:52






  • 2




    $begingroup$
    @DorianoBrogioli --- the symmetry of $A$ ensures that $Omega A$ is Hamiltonian (symplectic skew-symmetric), which is the condition needed for Lemma 17 mentioned by MTyson to apply.
    $endgroup$
    – Carlo Beenakker
    Apr 8 at 10:09







2




2




$begingroup$
No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
$endgroup$
– Teo Banica
Apr 7 at 17:24




$begingroup$
No idea, but a comment, a bit unrelated: for many computations with such things it's better to write $Omega$ as $diag(M,ldots,M)$ where $M=(^0_-1 ^1_0)$. Of course, in practice, it doesn't make that much of a difference.
$endgroup$
– Teo Banica
Apr 7 at 17:24




1




1




$begingroup$
For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
$endgroup$
– Christian Remling
Apr 7 at 18:09




$begingroup$
For $n=2$, there's the formula $Omega AOmega = (det A) A^-1T$ ($=(det A) A^-1$ here), so if $det A=det B$, then (1) says that $A^-1B=B^-1A$, and in general, there's an extra constant. Of course, all this is a far cry from the full question, but it might give a hint.
$endgroup$
– Christian Remling
Apr 7 at 18:09




3




3




$begingroup$
If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
$endgroup$
– MTyson
Apr 8 at 0:18




$begingroup$
If $A$ and $B$ are complex matrices for which $Omega A$ and $Omega B$ are (anti)symmetric and commute (the latter is equivalent to condition $(1)$), then there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal by Lemma 17 in the paper Carlo posted. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$.
$endgroup$
– MTyson
Apr 8 at 0:18












$begingroup$
Interesting! Could you please make this an answer, and maybe extend it a bit? For example, I still do not understand if this applies when $A$ is symmetric, i.e. $A=A^T$.
$endgroup$
– Doriano Brogioli
Apr 8 at 9:52




$begingroup$
Interesting! Could you please make this an answer, and maybe extend it a bit? For example, I still do not understand if this applies when $A$ is symmetric, i.e. $A=A^T$.
$endgroup$
– Doriano Brogioli
Apr 8 at 9:52




2




2




$begingroup$
@DorianoBrogioli --- the symmetry of $A$ ensures that $Omega A$ is Hamiltonian (symplectic skew-symmetric), which is the condition needed for Lemma 17 mentioned by MTyson to apply.
$endgroup$
– Carlo Beenakker
Apr 8 at 10:09




$begingroup$
@DorianoBrogioli --- the symmetry of $A$ ensures that $Omega A$ is Hamiltonian (symplectic skew-symmetric), which is the condition needed for Lemma 17 mentioned by MTyson to apply.
$endgroup$
– Carlo Beenakker
Apr 8 at 10:09










2 Answers
2






active

oldest

votes


















3












$begingroup$

Let $A$ and $B$ be complex symmetric matrices of even dimension which satisfy condition $(1)$ and for which $Omega A$ and $Omega B$ are diagonalizable. Then $Omega A$ and $Omega B$ are Hamiltonian (not (anti)symmetric as my comment said):
$$Omega^top (Omega A)^top Omega=-Omega A^topOmega^topOmega=-Omega A.$$
Condition $(1)$ means that $Omega A$ and $Omega B$ commute. By Lemma 17 in the paper in Carlo's answer, there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$ are of the same form.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Very useful and complete. Could you please comment on the requisite that $Omega A$ and $Omega B$ are diagonalizable? Can be expressed as a more explicit condition on $A$ and $B$? And what happens if they are not diagonalizable?
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 20:59






  • 1




    $begingroup$
    @DorianoBrogioli If $S^top AS=-Omega D$ then $S^-1Omega AS=D$, so this is a necessary condition. I don't know any equivalent conditions on $A$ nor if there's a Jordan-like form that the matrices can always be put into.
    $endgroup$
    – MTyson
    Apr 8 at 21:58






  • 1




    $begingroup$
    There is a symplectic version of the Jordan normal form (of a single matrix). Have a look at the paper Conjugacy classes in linear groups.
    $endgroup$
    – Tobias Diez
    yesterday


















4












$begingroup$

The symplectic counterpart of the fact that a family of commuting diagonalizable matrices is simultaneously diagonalizable is discussed in section 3.1 of On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
    $endgroup$
    – Christian Remling
    Apr 7 at 20:27










  • $begingroup$
    I agree. As far as I can understand, the paper has to do with the topic but does not directly contain the answer, and further elaboration and work is needed. Maybe the comment of MTyson (to the question) can help.
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 9:54











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Doriano Brogioli is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327421%2fsymplectic-equivalent-of-commuting-matrices%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Let $A$ and $B$ be complex symmetric matrices of even dimension which satisfy condition $(1)$ and for which $Omega A$ and $Omega B$ are diagonalizable. Then $Omega A$ and $Omega B$ are Hamiltonian (not (anti)symmetric as my comment said):
$$Omega^top (Omega A)^top Omega=-Omega A^topOmega^topOmega=-Omega A.$$
Condition $(1)$ means that $Omega A$ and $Omega B$ commute. By Lemma 17 in the paper in Carlo's answer, there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$ are of the same form.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Very useful and complete. Could you please comment on the requisite that $Omega A$ and $Omega B$ are diagonalizable? Can be expressed as a more explicit condition on $A$ and $B$? And what happens if they are not diagonalizable?
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 20:59






  • 1




    $begingroup$
    @DorianoBrogioli If $S^top AS=-Omega D$ then $S^-1Omega AS=D$, so this is a necessary condition. I don't know any equivalent conditions on $A$ nor if there's a Jordan-like form that the matrices can always be put into.
    $endgroup$
    – MTyson
    Apr 8 at 21:58






  • 1




    $begingroup$
    There is a symplectic version of the Jordan normal form (of a single matrix). Have a look at the paper Conjugacy classes in linear groups.
    $endgroup$
    – Tobias Diez
    yesterday















3












$begingroup$

Let $A$ and $B$ be complex symmetric matrices of even dimension which satisfy condition $(1)$ and for which $Omega A$ and $Omega B$ are diagonalizable. Then $Omega A$ and $Omega B$ are Hamiltonian (not (anti)symmetric as my comment said):
$$Omega^top (Omega A)^top Omega=-Omega A^topOmega^topOmega=-Omega A.$$
Condition $(1)$ means that $Omega A$ and $Omega B$ commute. By Lemma 17 in the paper in Carlo's answer, there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$ are of the same form.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Very useful and complete. Could you please comment on the requisite that $Omega A$ and $Omega B$ are diagonalizable? Can be expressed as a more explicit condition on $A$ and $B$? And what happens if they are not diagonalizable?
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 20:59






  • 1




    $begingroup$
    @DorianoBrogioli If $S^top AS=-Omega D$ then $S^-1Omega AS=D$, so this is a necessary condition. I don't know any equivalent conditions on $A$ nor if there's a Jordan-like form that the matrices can always be put into.
    $endgroup$
    – MTyson
    Apr 8 at 21:58






  • 1




    $begingroup$
    There is a symplectic version of the Jordan normal form (of a single matrix). Have a look at the paper Conjugacy classes in linear groups.
    $endgroup$
    – Tobias Diez
    yesterday













3












3








3





$begingroup$

Let $A$ and $B$ be complex symmetric matrices of even dimension which satisfy condition $(1)$ and for which $Omega A$ and $Omega B$ are diagonalizable. Then $Omega A$ and $Omega B$ are Hamiltonian (not (anti)symmetric as my comment said):
$$Omega^top (Omega A)^top Omega=-Omega A^topOmega^topOmega=-Omega A.$$
Condition $(1)$ means that $Omega A$ and $Omega B$ commute. By Lemma 17 in the paper in Carlo's answer, there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$ are of the same form.






share|cite|improve this answer











$endgroup$



Let $A$ and $B$ be complex symmetric matrices of even dimension which satisfy condition $(1)$ and for which $Omega A$ and $Omega B$ are diagonalizable. Then $Omega A$ and $Omega B$ are Hamiltonian (not (anti)symmetric as my comment said):
$$Omega^top (Omega A)^top Omega=-Omega A^topOmega^topOmega=-Omega A.$$
Condition $(1)$ means that $Omega A$ and $Omega B$ commute. By Lemma 17 in the paper in Carlo's answer, there's a symplectic $S$ such that $S^-1Omega AS=D$ and $S^-1Omega BS=E$ are diagonal. Hence $S^top AS=-Omega D$ and $S^top BS=-Omega E$ are of the same form.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 8 at 13:24

























answered Apr 8 at 13:04









MTysonMTyson

1,4061611




1,4061611











  • $begingroup$
    Very useful and complete. Could you please comment on the requisite that $Omega A$ and $Omega B$ are diagonalizable? Can be expressed as a more explicit condition on $A$ and $B$? And what happens if they are not diagonalizable?
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 20:59






  • 1




    $begingroup$
    @DorianoBrogioli If $S^top AS=-Omega D$ then $S^-1Omega AS=D$, so this is a necessary condition. I don't know any equivalent conditions on $A$ nor if there's a Jordan-like form that the matrices can always be put into.
    $endgroup$
    – MTyson
    Apr 8 at 21:58






  • 1




    $begingroup$
    There is a symplectic version of the Jordan normal form (of a single matrix). Have a look at the paper Conjugacy classes in linear groups.
    $endgroup$
    – Tobias Diez
    yesterday
















  • $begingroup$
    Very useful and complete. Could you please comment on the requisite that $Omega A$ and $Omega B$ are diagonalizable? Can be expressed as a more explicit condition on $A$ and $B$? And what happens if they are not diagonalizable?
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 20:59






  • 1




    $begingroup$
    @DorianoBrogioli If $S^top AS=-Omega D$ then $S^-1Omega AS=D$, so this is a necessary condition. I don't know any equivalent conditions on $A$ nor if there's a Jordan-like form that the matrices can always be put into.
    $endgroup$
    – MTyson
    Apr 8 at 21:58






  • 1




    $begingroup$
    There is a symplectic version of the Jordan normal form (of a single matrix). Have a look at the paper Conjugacy classes in linear groups.
    $endgroup$
    – Tobias Diez
    yesterday















$begingroup$
Very useful and complete. Could you please comment on the requisite that $Omega A$ and $Omega B$ are diagonalizable? Can be expressed as a more explicit condition on $A$ and $B$? And what happens if they are not diagonalizable?
$endgroup$
– Doriano Brogioli
Apr 8 at 20:59




$begingroup$
Very useful and complete. Could you please comment on the requisite that $Omega A$ and $Omega B$ are diagonalizable? Can be expressed as a more explicit condition on $A$ and $B$? And what happens if they are not diagonalizable?
$endgroup$
– Doriano Brogioli
Apr 8 at 20:59




1




1




$begingroup$
@DorianoBrogioli If $S^top AS=-Omega D$ then $S^-1Omega AS=D$, so this is a necessary condition. I don't know any equivalent conditions on $A$ nor if there's a Jordan-like form that the matrices can always be put into.
$endgroup$
– MTyson
Apr 8 at 21:58




$begingroup$
@DorianoBrogioli If $S^top AS=-Omega D$ then $S^-1Omega AS=D$, so this is a necessary condition. I don't know any equivalent conditions on $A$ nor if there's a Jordan-like form that the matrices can always be put into.
$endgroup$
– MTyson
Apr 8 at 21:58




1




1




$begingroup$
There is a symplectic version of the Jordan normal form (of a single matrix). Have a look at the paper Conjugacy classes in linear groups.
$endgroup$
– Tobias Diez
yesterday




$begingroup$
There is a symplectic version of the Jordan normal form (of a single matrix). Have a look at the paper Conjugacy classes in linear groups.
$endgroup$
– Tobias Diez
yesterday











4












$begingroup$

The symplectic counterpart of the fact that a family of commuting diagonalizable matrices is simultaneously diagonalizable is discussed in section 3.1 of On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
    $endgroup$
    – Christian Remling
    Apr 7 at 20:27










  • $begingroup$
    I agree. As far as I can understand, the paper has to do with the topic but does not directly contain the answer, and further elaboration and work is needed. Maybe the comment of MTyson (to the question) can help.
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 9:54















4












$begingroup$

The symplectic counterpart of the fact that a family of commuting diagonalizable matrices is simultaneously diagonalizable is discussed in section 3.1 of On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
    $endgroup$
    – Christian Remling
    Apr 7 at 20:27










  • $begingroup$
    I agree. As far as I can understand, the paper has to do with the topic but does not directly contain the answer, and further elaboration and work is needed. Maybe the comment of MTyson (to the question) can help.
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 9:54













4












4








4





$begingroup$

The symplectic counterpart of the fact that a family of commuting diagonalizable matrices is simultaneously diagonalizable is discussed in section 3.1 of On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation






share|cite|improve this answer









$endgroup$



The symplectic counterpart of the fact that a family of commuting diagonalizable matrices is simultaneously diagonalizable is discussed in section 3.1 of On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 7 at 19:41









Carlo BeenakkerCarlo Beenakker

80.3k9193295




80.3k9193295







  • 2




    $begingroup$
    I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
    $endgroup$
    – Christian Remling
    Apr 7 at 20:27










  • $begingroup$
    I agree. As far as I can understand, the paper has to do with the topic but does not directly contain the answer, and further elaboration and work is needed. Maybe the comment of MTyson (to the question) can help.
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 9:54












  • 2




    $begingroup$
    I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
    $endgroup$
    – Christian Remling
    Apr 7 at 20:27










  • $begingroup$
    I agree. As far as I can understand, the paper has to do with the topic but does not directly contain the answer, and further elaboration and work is needed. Maybe the comment of MTyson (to the question) can help.
    $endgroup$
    – Doriano Brogioli
    Apr 8 at 9:54







2




2




$begingroup$
I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
$endgroup$
– Christian Remling
Apr 7 at 20:27




$begingroup$
I don't think this paper ever considers condition (1) of the OP; "commuting" there just means commuting.
$endgroup$
– Christian Remling
Apr 7 at 20:27












$begingroup$
I agree. As far as I can understand, the paper has to do with the topic but does not directly contain the answer, and further elaboration and work is needed. Maybe the comment of MTyson (to the question) can help.
$endgroup$
– Doriano Brogioli
Apr 8 at 9:54




$begingroup$
I agree. As far as I can understand, the paper has to do with the topic but does not directly contain the answer, and further elaboration and work is needed. Maybe the comment of MTyson (to the question) can help.
$endgroup$
– Doriano Brogioli
Apr 8 at 9:54










Doriano Brogioli is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Doriano Brogioli is a new contributor. Be nice, and check out our Code of Conduct.












Doriano Brogioli is a new contributor. Be nice, and check out our Code of Conduct.











Doriano Brogioli is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327421%2fsymplectic-equivalent-of-commuting-matrices%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020