Proof for divisibility of polynomials. [on hold] The 2019 Stack Overflow Developer Survey Results Are InShow that $a^p^n=amod p$Divisibility problemPolynomial divisibility proofPolynomials and Divisibility Rule.Induction proof, divisibilityDivisibility of a polynomial by another polynomialDoes there exist a polynomial $f(x)$ with real coefficients such that $f(x)^2$ has fewer nonzero coefficients than $f(x)$?Polynomials - Relation of DivisibilityProof using concept of polynomials.Proof of Existence of A Rational Polynomial which has Irrational Root for an EquationTricky problem of infinite harmonic sum of polynomials
How to type a long/em dash `—`
Straighten subgroup lattice
How can I define good in a religion that claims no moral authority?
How to translate "being like"?
I am an eight letter word. What am I?
How much of the clove should I use when using big garlic heads?
Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?
Can we generate random numbers using irrational numbers like π and e?
Is it a good practice to use a static variable in a Test Class and use that in the actual class instead of Test.isRunningTest()?
What do hard-Brexiteers want with respect to the Irish border?
Can withdrawing asylum be illegal?
Pokemon Turn Based battle (Python)
Is Cinnamon a desktop environment or a window manager? (Or both?)
Getting crown tickets for Statue of Liberty
"as much details as you can remember"
Why not take a picture of a closer black hole?
writing variables above the numbers in tikz picture
How to obtain a position of last non-zero element
Why isn't the circumferential light around the M87 black hole's event horizon symmetric?
How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?
What do these terms in Caesar's Gallic Wars mean?
Ubuntu Server install with full GUI
Why is the maximum length of OpenWrt’s root password 8 characters?
Old scifi movie from the 50s or 60s with men in solid red uniforms who interrogate a spy from the past
Proof for divisibility of polynomials. [on hold]
The 2019 Stack Overflow Developer Survey Results Are InShow that $a^p^n=amod p$Divisibility problemPolynomial divisibility proofPolynomials and Divisibility Rule.Induction proof, divisibilityDivisibility of a polynomial by another polynomialDoes there exist a polynomial $f(x)$ with real coefficients such that $f(x)^2$ has fewer nonzero coefficients than $f(x)$?Polynomials - Relation of DivisibilityProof using concept of polynomials.Proof of Existence of A Rational Polynomial which has Irrational Root for an EquationTricky problem of infinite harmonic sum of polynomials
$begingroup$
I have no idea how to proceed with the following question. Please help!
"Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."
polynomials divisibility
New contributor
$endgroup$
put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
add a comment |
$begingroup$
I have no idea how to proceed with the following question. Please help!
"Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."
polynomials divisibility
New contributor
$endgroup$
put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
add a comment |
$begingroup$
I have no idea how to proceed with the following question. Please help!
"Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."
polynomials divisibility
New contributor
$endgroup$
I have no idea how to proceed with the following question. Please help!
"Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."
polynomials divisibility
polynomials divisibility
New contributor
New contributor
New contributor
asked Apr 7 at 18:12
HeetGorakhiyaHeetGorakhiya
283
283
New contributor
New contributor
put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Remember that $$a-bmid P(a)-P(b)$$
so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$
so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$
and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$
and finaly we have $$P(x)-xmid P(P(P(x)))-x$$
$endgroup$
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
Apr 7 at 18:36
add a comment |
$begingroup$
$bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$
Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,
namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$
Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$
$endgroup$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Remember that $$a-bmid P(a)-P(b)$$
so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$
so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$
and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$
and finaly we have $$P(x)-xmid P(P(P(x)))-x$$
$endgroup$
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
Apr 7 at 18:36
add a comment |
$begingroup$
Remember that $$a-bmid P(a)-P(b)$$
so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$
so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$
and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$
and finaly we have $$P(x)-xmid P(P(P(x)))-x$$
$endgroup$
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
Apr 7 at 18:36
add a comment |
$begingroup$
Remember that $$a-bmid P(a)-P(b)$$
so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$
so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$
and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$
and finaly we have $$P(x)-xmid P(P(P(x)))-x$$
$endgroup$
Remember that $$a-bmid P(a)-P(b)$$
so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$
so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$
and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$
and finaly we have $$P(x)-xmid P(P(P(x)))-x$$
edited Apr 7 at 18:25
answered Apr 7 at 18:16
Maria MazurMaria Mazur
49.9k1361125
49.9k1361125
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
Apr 7 at 18:36
add a comment |
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
Apr 7 at 18:36
1
1
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
Apr 7 at 18:36
$begingroup$
Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
$endgroup$
– Bill Dubuque
Apr 7 at 18:36
add a comment |
$begingroup$
$bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$
Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,
namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$
Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$
$endgroup$
add a comment |
$begingroup$
$bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$
Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,
namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$
Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$
$endgroup$
add a comment |
$begingroup$
$bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$
Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,
namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$
Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$
$endgroup$
$bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$
Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,
namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$
Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$
edited Apr 7 at 18:45
answered Apr 7 at 18:18
Bill DubuqueBill Dubuque
214k29197656
214k29197656
add a comment |
add a comment |