Proof for divisibility of polynomials. [on hold] The 2019 Stack Overflow Developer Survey Results Are InShow that $a^p^n=amod p$Divisibility problemPolynomial divisibility proofPolynomials and Divisibility Rule.Induction proof, divisibilityDivisibility of a polynomial by another polynomialDoes there exist a polynomial $f(x)$ with real coefficients such that $f(x)^2$ has fewer nonzero coefficients than $f(x)$?Polynomials - Relation of DivisibilityProof using concept of polynomials.Proof of Existence of A Rational Polynomial which has Irrational Root for an EquationTricky problem of infinite harmonic sum of polynomials

How to type a long/em dash `—`

Straighten subgroup lattice

How can I define good in a religion that claims no moral authority?

How to translate "being like"?

I am an eight letter word. What am I?

How much of the clove should I use when using big garlic heads?

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Can we generate random numbers using irrational numbers like π and e?

Is it a good practice to use a static variable in a Test Class and use that in the actual class instead of Test.isRunningTest()?

What do hard-Brexiteers want with respect to the Irish border?

Can withdrawing asylum be illegal?

Pokemon Turn Based battle (Python)

Is Cinnamon a desktop environment or a window manager? (Or both?)

Getting crown tickets for Statue of Liberty

"as much details as you can remember"

Why not take a picture of a closer black hole?

writing variables above the numbers in tikz picture

How to obtain a position of last non-zero element

Why isn't the circumferential light around the M87 black hole's event horizon symmetric?

How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?

What do these terms in Caesar's Gallic Wars mean?

Ubuntu Server install with full GUI

Why is the maximum length of OpenWrt’s root password 8 characters?

Old scifi movie from the 50s or 60s with men in solid red uniforms who interrogate a spy from the past



Proof for divisibility of polynomials. [on hold]



The 2019 Stack Overflow Developer Survey Results Are InShow that $a^p^n=amod p$Divisibility problemPolynomial divisibility proofPolynomials and Divisibility Rule.Induction proof, divisibilityDivisibility of a polynomial by another polynomialDoes there exist a polynomial $f(x)$ with real coefficients such that $f(x)^2$ has fewer nonzero coefficients than $f(x)$?Polynomials - Relation of DivisibilityProof using concept of polynomials.Proof of Existence of A Rational Polynomial which has Irrational Root for an EquationTricky problem of infinite harmonic sum of polynomials










2












$begingroup$


I have no idea how to proceed with the following question. Please help!



"Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."










share|cite|improve this question







New contributor




HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
If this question can be reworded to fit the rules in the help center, please edit the question.




















    2












    $begingroup$


    I have no idea how to proceed with the following question. Please help!



    "Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."










    share|cite|improve this question







    New contributor




    HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$



    put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39


    This question appears to be off-topic. The users who voted to close gave this specific reason:


    • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
    If this question can be reworded to fit the rules in the help center, please edit the question.


















      2












      2








      2





      $begingroup$


      I have no idea how to proceed with the following question. Please help!



      "Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."










      share|cite|improve this question







      New contributor




      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I have no idea how to proceed with the following question. Please help!



      "Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."







      polynomials divisibility






      share|cite|improve this question







      New contributor




      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Apr 7 at 18:12









      HeetGorakhiyaHeetGorakhiya

      283




      283




      New contributor




      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
      If this question can be reworded to fit the rules in the help center, please edit the question.







      put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
      If this question can be reworded to fit the rules in the help center, please edit the question.




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Remember that $$a-bmid P(a)-P(b)$$



          so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$



          so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$



          and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$



          and finaly we have $$P(x)-xmid P(P(P(x)))-x$$






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
            $endgroup$
            – Bill Dubuque
            Apr 7 at 18:36



















          4












          $begingroup$

          $bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$



          Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,



          namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$



          Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$






          share|cite|improve this answer











          $endgroup$



















            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Remember that $$a-bmid P(a)-P(b)$$



            so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$



            so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$



            and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$



            and finaly we have $$P(x)-xmid P(P(P(x)))-x$$






            share|cite|improve this answer











            $endgroup$








            • 1




              $begingroup$
              Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
              $endgroup$
              – Bill Dubuque
              Apr 7 at 18:36
















            4












            $begingroup$

            Remember that $$a-bmid P(a)-P(b)$$



            so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$



            so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$



            and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$



            and finaly we have $$P(x)-xmid P(P(P(x)))-x$$






            share|cite|improve this answer











            $endgroup$








            • 1




              $begingroup$
              Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
              $endgroup$
              – Bill Dubuque
              Apr 7 at 18:36














            4












            4








            4





            $begingroup$

            Remember that $$a-bmid P(a)-P(b)$$



            so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$



            so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$



            and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$



            and finaly we have $$P(x)-xmid P(P(P(x)))-x$$






            share|cite|improve this answer











            $endgroup$



            Remember that $$a-bmid P(a)-P(b)$$



            so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$



            so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$



            and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$



            and finaly we have $$P(x)-xmid P(P(P(x)))-x$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Apr 7 at 18:25

























            answered Apr 7 at 18:16









            Maria MazurMaria Mazur

            49.9k1361125




            49.9k1361125







            • 1




              $begingroup$
              Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
              $endgroup$
              – Bill Dubuque
              Apr 7 at 18:36













            • 1




              $begingroup$
              Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
              $endgroup$
              – Bill Dubuque
              Apr 7 at 18:36








            1




            1




            $begingroup$
            Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
            $endgroup$
            – Bill Dubuque
            Apr 7 at 18:36





            $begingroup$
            Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
            $endgroup$
            – Bill Dubuque
            Apr 7 at 18:36












            4












            $begingroup$

            $bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$



            Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,



            namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$



            Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$






            share|cite|improve this answer











            $endgroup$

















              4












              $begingroup$

              $bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$



              Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,



              namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$



              Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$






              share|cite|improve this answer











              $endgroup$















                4












                4








                4





                $begingroup$

                $bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$



                Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,



                namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$



                Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$






                share|cite|improve this answer











                $endgroup$



                $bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$



                Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,



                namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$



                Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Apr 7 at 18:45

























                answered Apr 7 at 18:18









                Bill DubuqueBill Dubuque

                214k29197656




                214k29197656













                    Popular posts from this blog

                    Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                    Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                    Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020