Proof for divisibility of polynomials. [on hold] The 2019 Stack Overflow Developer Survey Results Are InShow that $a^p^n=amod p$Divisibility problemPolynomial divisibility proofPolynomials and Divisibility Rule.Induction proof, divisibilityDivisibility of a polynomial by another polynomialDoes there exist a polynomial $f(x)$ with real coefficients such that $f(x)^2$ has fewer nonzero coefficients than $f(x)$?Polynomials - Relation of DivisibilityProof using concept of polynomials.Proof of Existence of A Rational Polynomial which has Irrational Root for an EquationTricky problem of infinite harmonic sum of polynomials

How to type a long/em dash `—`

Straighten subgroup lattice

How can I define good in a religion that claims no moral authority?

How to translate "being like"?

I am an eight letter word. What am I?

How much of the clove should I use when using big garlic heads?

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Can we generate random numbers using irrational numbers like π and e?

Is it a good practice to use a static variable in a Test Class and use that in the actual class instead of Test.isRunningTest()?

What do hard-Brexiteers want with respect to the Irish border?

Can withdrawing asylum be illegal?

Pokemon Turn Based battle (Python)

Is Cinnamon a desktop environment or a window manager? (Or both?)

Getting crown tickets for Statue of Liberty

"as much details as you can remember"

Why not take a picture of a closer black hole?

writing variables above the numbers in tikz picture

How to obtain a position of last non-zero element

Why isn't the circumferential light around the M87 black hole's event horizon symmetric?

How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?

What do these terms in Caesar's Gallic Wars mean?

Ubuntu Server install with full GUI

Why is the maximum length of OpenWrt’s root password 8 characters?

Old scifi movie from the 50s or 60s with men in solid red uniforms who interrogate a spy from the past



Proof for divisibility of polynomials. [on hold]



The 2019 Stack Overflow Developer Survey Results Are InShow that $a^p^n=amod p$Divisibility problemPolynomial divisibility proofPolynomials and Divisibility Rule.Induction proof, divisibilityDivisibility of a polynomial by another polynomialDoes there exist a polynomial $f(x)$ with real coefficients such that $f(x)^2$ has fewer nonzero coefficients than $f(x)$?Polynomials - Relation of DivisibilityProof using concept of polynomials.Proof of Existence of A Rational Polynomial which has Irrational Root for an EquationTricky problem of infinite harmonic sum of polynomials










2












$begingroup$


I have no idea how to proceed with the following question. Please help!



"Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."










share|cite|improve this question







New contributor




HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
If this question can be reworded to fit the rules in the help center, please edit the question.




















    2












    $begingroup$


    I have no idea how to proceed with the following question. Please help!



    "Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."










    share|cite|improve this question







    New contributor




    HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$



    put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39


    This question appears to be off-topic. The users who voted to close gave this specific reason:


    • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
    If this question can be reworded to fit the rules in the help center, please edit the question.


















      2












      2








      2





      $begingroup$


      I have no idea how to proceed with the following question. Please help!



      "Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."










      share|cite|improve this question







      New contributor




      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I have no idea how to proceed with the following question. Please help!



      "Prove that for any polynomial $ P(x) $ with real coefficients, other than polynomial $x$, the polynomial $ P(P(P(x))) − x $ is divisible by $ P(x) − x $."







      polynomials divisibility






      share|cite|improve this question







      New contributor




      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Apr 7 at 18:12









      HeetGorakhiyaHeetGorakhiya

      283




      283




      New contributor




      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      HeetGorakhiya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
      If this question can be reworded to fit the rules in the help center, please edit the question.







      put on hold as off-topic by José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL Apr 8 at 1:39


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Sil, John Omielan, TheSimpliFire, RRL
      If this question can be reworded to fit the rules in the help center, please edit the question.




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Remember that $$a-bmid P(a)-P(b)$$



          so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$



          so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$



          and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$



          and finaly we have $$P(x)-xmid P(P(P(x)))-x$$






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
            $endgroup$
            – Bill Dubuque
            Apr 7 at 18:36



















          4












          $begingroup$

          $bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$



          Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,



          namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$



          Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$






          share|cite|improve this answer











          $endgroup$



















            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Remember that $$a-bmid P(a)-P(b)$$



            so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$



            so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$



            and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$



            and finaly we have $$P(x)-xmid P(P(P(x)))-x$$






            share|cite|improve this answer











            $endgroup$








            • 1




              $begingroup$
              Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
              $endgroup$
              – Bill Dubuque
              Apr 7 at 18:36
















            4












            $begingroup$

            Remember that $$a-bmid P(a)-P(b)$$



            so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$



            so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$



            and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$



            and finaly we have $$P(x)-xmid P(P(P(x)))-x$$






            share|cite|improve this answer











            $endgroup$








            • 1




              $begingroup$
              Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
              $endgroup$
              – Bill Dubuque
              Apr 7 at 18:36














            4












            4








            4





            $begingroup$

            Remember that $$a-bmid P(a)-P(b)$$



            so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$



            so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$



            and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$



            and finaly we have $$P(x)-xmid P(P(P(x)))-x$$






            share|cite|improve this answer











            $endgroup$



            Remember that $$a-bmid P(a)-P(b)$$



            so $$P(x)-xmid P(P(x))-P(x)$$ and thus $$P(x)-xmid (P(P(x))-P(x))+ (P(x)-x)$$



            so $$P(x)-xmid P(P(x))-xmid P(P(P(x)))-P(x)$$



            and thus $$P(x)-xmid (P(P(P(x)))-P(x))+ (P(x)-x)$$



            and finaly we have $$P(x)-xmid P(P(P(x)))-x$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Apr 7 at 18:25

























            answered Apr 7 at 18:16









            Maria MazurMaria Mazur

            49.9k1361125




            49.9k1361125







            • 1




              $begingroup$
              Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
              $endgroup$
              – Bill Dubuque
              Apr 7 at 18:36













            • 1




              $begingroup$
              Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
              $endgroup$
              – Bill Dubuque
              Apr 7 at 18:36








            1




            1




            $begingroup$
            Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
            $endgroup$
            – Bill Dubuque
            Apr 7 at 18:36





            $begingroup$
            Modular arithmetic was invented to clarify proofs like this where the divisibilty relation greatly obfuscates the algebraic (operational) essence of the matter - here the simple notion of a fixed point - see my answer.
            $endgroup$
            – Bill Dubuque
            Apr 7 at 18:36












            4












            $begingroup$

            $bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$



            Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,



            namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$



            Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$






            share|cite|improve this answer











            $endgroup$

















              4












              $begingroup$

              $bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$



              Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,



              namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$



              Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$






              share|cite|improve this answer











              $endgroup$















                4












                4








                4





                $begingroup$

                $bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$



                Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,



                namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$



                Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$






                share|cite|improve this answer











                $endgroup$



                $bmod P(x)!-!x!:, color#c00P(x)equiv x,Rightarrow, P(P(color#c00P(x)))equiv P(P(color#c00x)))equiv P(x)equiv x$



                Remark $ $ The proof is a special case of: fixed points stay fixed on iteration by induction,



                namely: $, $ if $ color#c00f(x) = x $ then $, f^large n(x) = x,Rightarrow, f^large n+1(x) = f^n(color#c00f(x))=f^n(color#c00x)=x$



                Corollary $ P(x)!-!x,$ divides $, P^n(x)!-!x,$ for all $,ninBbb N,,$ and all polynomials $,P(x)$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Apr 7 at 18:45

























                answered Apr 7 at 18:18









                Bill DubuqueBill Dubuque

                214k29197656




                214k29197656













                    Popular posts from this blog

                    Wikipedia:Vital articles Мазмуну Biography - Өмүр баян Philosophy and psychology - Философия жана психология Religion - Дин Social sciences - Коомдук илимдер Language and literature - Тил жана адабият Science - Илим Technology - Технология Arts and recreation - Искусство жана эс алуу History and geography - Тарых жана география Навигация менюсу

                    Bruxelas-Capital Índice Historia | Composición | Situación lingüística | Clima | Cidades irmandadas | Notas | Véxase tamén | Menú de navegacióneO uso das linguas en Bruxelas e a situación do neerlandés"Rexión de Bruxelas Capital"o orixinalSitio da rexiónPáxina de Bruselas no sitio da Oficina de Promoción Turística de Valonia e BruxelasMapa Interactivo da Rexión de Bruxelas-CapitaleeWorldCat332144929079854441105155190212ID28008674080552-90000 0001 0666 3698n94104302ID540940339365017018237

                    What should I write in an apology letter, since I have decided not to join a company after accepting an offer letterShould I keep looking after accepting a job offer?What should I do when I've been verbally told I would get an offer letter, but still haven't gotten one after 4 weeks?Do I accept an offer from a company that I am not likely to join?New job hasn't confirmed starting date and I want to give current employer as much notice as possibleHow should I address my manager in my resignation letter?HR delayed background verification, now jobless as resignedNo email communication after accepting a formal written offer. How should I phrase the call?What should I do if after receiving a verbal offer letter I am informed that my written job offer is put on hold due to some internal issues?Should I inform the current employer that I am about to resign within 1-2 weeks since I have signed the offer letter and waiting for visa?What company will do, if I send their offer letter to another company