How do i show$lim_nrightarrow infty frac[(n+1)(n+2)…(2n)]^frac1nn=frac4e$ without using integration?Proving that $lim_n rightarrowinfty int_0^fracpi2 sin(t^n) dt =0$Prove that $lim_xtoinfty frace^xx^n=infty$ without using L'hôpital's ruleHow to show that $lim_nrightarrow infty (1+fracxn)^n=e^x$$lim_nrightarrowinftyfrac1nsum_k=1^nfrackk^2+1$Show that $lim_ntoinftyfrac2^nn^ln(n)=infty$Find the limit $lim_limitsxto 0^+left( e^frac1sin x-e^frac1xright)$Show that $lim_t rightarrow infty tF(t) = 0.$Show that $lim_x rightarrow infty f(x)$ exists by the given condition.How can I evaluate $lim_n rightarrow infty int_n^infty fracn^2 arctan frac1xx^2+n^2 dx$?Why is $lim_x rightarrow -inftyfracxsqrtx^2 = -1$ and not $1$?
Is it a good idea to copy a trader when investing?
Why do unstable nuclei form?
Is every story set in the future "science fiction"?
What dice to use in a game that revolves around triangles?
How can Sam Wilson fulfill his future role?
What is the minimum required technology to reanimate someone who has been cryogenically frozen?
Why use steam instead of just hot air?
Is it a Munchausen Number?
How can I make parentheses stick to formula?
Are on’yomi words loanwords?
"Estrontium" on poster
What does the "DS" in "DS-..." US visa application forms stand for?
Probability of taking balls without replacement from a bag question
What's the "magic similar to the Knock spell" referenced in the Dungeon of the Mad Mage adventure?
Hexagonal Grid Filling
What is the status of the three crises in the history of mathematics?
Names of the Six Tastes
Output the date in the Mel calendar
Why did Missandei say this?
Why is there a cap on 401k contributions?
Thawing Glaciers return to hand interaction
Is it safe to keep the GPU on 100% utilization for a very long time?
Why does the electron wavefunction not collapse within atoms at room temperature in gas, liquids or solids due to decoherence?
Passport stamps art, can it be done?
How do i show$lim_nrightarrow infty frac[(n+1)(n+2)…(2n)]^frac1nn=frac4e$ without using integration?
Proving that $lim_n rightarrowinfty int_0^fracpi2 sin(t^n) dt =0$Prove that $lim_xtoinfty frace^xx^n=infty$ without using L'hôpital's ruleHow to show that $lim_nrightarrow infty (1+fracxn)^n=e^x$$lim_nrightarrowinftyfrac1nsum_k=1^nfrackk^2+1$Show that $lim_ntoinftyfrac2^nn^ln(n)=infty$Find the limit $lim_limitsxto 0^+left( e^frac1sin x-e^frac1xright)$Show that $lim_t rightarrow infty tF(t) = 0.$Show that $lim_x rightarrow infty f(x)$ exists by the given condition.How can I evaluate $lim_n rightarrow infty int_n^infty fracn^2 arctan frac1xx^2+n^2 dx$?Why is $lim_x rightarrow -inftyfracxsqrtx^2 = -1$ and not $1$?
$begingroup$
Without using integration show that $$lim_nrightarrow infty frac[(n+1)(n+2)...(2n)]^frac1nn=frac4e$$. It could have been easier with integration, but I cannot proceed with this one. Can anyone please give me any hint or the solution... I will be very grateful. Please.
real-analysis integration limits
$endgroup$
add a comment |
$begingroup$
Without using integration show that $$lim_nrightarrow infty frac[(n+1)(n+2)...(2n)]^frac1nn=frac4e$$. It could have been easier with integration, but I cannot proceed with this one. Can anyone please give me any hint or the solution... I will be very grateful. Please.
real-analysis integration limits
$endgroup$
add a comment |
$begingroup$
Without using integration show that $$lim_nrightarrow infty frac[(n+1)(n+2)...(2n)]^frac1nn=frac4e$$. It could have been easier with integration, but I cannot proceed with this one. Can anyone please give me any hint or the solution... I will be very grateful. Please.
real-analysis integration limits
$endgroup$
Without using integration show that $$lim_nrightarrow infty frac[(n+1)(n+2)...(2n)]^frac1nn=frac4e$$. It could have been easier with integration, but I cannot proceed with this one. Can anyone please give me any hint or the solution... I will be very grateful. Please.
real-analysis integration limits
real-analysis integration limits
edited Apr 30 at 12:01
YuiTo Cheng
3,21161145
3,21161145
asked Apr 30 at 6:47
user655791
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
By Stirling,
$$frac1nsqrt[n]frac(2n)!n!simfrac1nfracsqrt[2n]4pi nleft(dfrac2neright)^2sqrt[n]4pi ndfrac netofrac 4e.$$
$endgroup$
add a comment |
$begingroup$
If we let $a_n=frac[(n+1)(n+2)...(2n)]n^n=frac(2n)!n!n^n$, then $frac[(n+1)(n+2)...(2n)]^frac1nn=(a_n)^frac1n$. Then $fraca_n+1a_n=frac(2n+2)!(2n)!×fracn!(n+1)!×fracn^n(n+1)^n+1=frac(2n+1)(2n+2)(n+1)×fracn^n(n+1)^n+1=frac2(2n+1)(n+1)×fracn^n(n+1)^n+1=frac4n(1+frac12n)n(1+frac1n)×(1+frac1n)^-nrightarrow4×e^-1$.
Edit:explaining the last step explicitly... note that as $nrightarrow infty, frac1n,frac12nrightarrow 0$, so we can replace $frac12n$ with $frac1n$. Now hence, $frac4n(1+frac12n)n(1+frac1n)×(1+frac1n)^-n=4×(1+frac1n)^-n rightarrow 4× e^-1$
$endgroup$
$begingroup$
The last step is a little too fast. Can you justify why you can replace the two factors by their limits $4$ and $e^-1$, while you still have an infinite product for all $n$.
$endgroup$
– Yves Daoust
Apr 30 at 7:14
$begingroup$
I justified....
$endgroup$
– Shamim Akhtar
Apr 30 at 7:32
$begingroup$
No, you didn't add a word. How is it that $sqrt[n]prod_1,n(1+frac1k)^kto e$ ?
$endgroup$
– Yves Daoust
Apr 30 at 7:34
add a comment |
$begingroup$
By taking logs of both sides we can get:
$$L=lim_ntoinftyfracleft[(n+1)(n+2)(n+3)...(2n)right]^1/nn$$
$$ln(L)=lim_ntoinftyfrac1nlnleft[(n+1)(n+2)(n+3)...(2n)right]-ln(n)$$
$$ln(L)=lim_ntoinftyfrac1nsum_i=1^nln(n+i)-ln(n)$$
And I am sure there is a formula for the summation of logs in this form. Alternatively we can say:
$$ln(L)=lim_ntoinftyfrac1nlnleft(frac(2n)!n!right)-ln(n)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3207894%2fhow-do-i-show-lim-n-rightarrow-infty-fracn1n2-2n-frac1n%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By Stirling,
$$frac1nsqrt[n]frac(2n)!n!simfrac1nfracsqrt[2n]4pi nleft(dfrac2neright)^2sqrt[n]4pi ndfrac netofrac 4e.$$
$endgroup$
add a comment |
$begingroup$
By Stirling,
$$frac1nsqrt[n]frac(2n)!n!simfrac1nfracsqrt[2n]4pi nleft(dfrac2neright)^2sqrt[n]4pi ndfrac netofrac 4e.$$
$endgroup$
add a comment |
$begingroup$
By Stirling,
$$frac1nsqrt[n]frac(2n)!n!simfrac1nfracsqrt[2n]4pi nleft(dfrac2neright)^2sqrt[n]4pi ndfrac netofrac 4e.$$
$endgroup$
By Stirling,
$$frac1nsqrt[n]frac(2n)!n!simfrac1nfracsqrt[2n]4pi nleft(dfrac2neright)^2sqrt[n]4pi ndfrac netofrac 4e.$$
answered Apr 30 at 7:23
Yves DaoustYves Daoust
136k676237
136k676237
add a comment |
add a comment |
$begingroup$
If we let $a_n=frac[(n+1)(n+2)...(2n)]n^n=frac(2n)!n!n^n$, then $frac[(n+1)(n+2)...(2n)]^frac1nn=(a_n)^frac1n$. Then $fraca_n+1a_n=frac(2n+2)!(2n)!×fracn!(n+1)!×fracn^n(n+1)^n+1=frac(2n+1)(2n+2)(n+1)×fracn^n(n+1)^n+1=frac2(2n+1)(n+1)×fracn^n(n+1)^n+1=frac4n(1+frac12n)n(1+frac1n)×(1+frac1n)^-nrightarrow4×e^-1$.
Edit:explaining the last step explicitly... note that as $nrightarrow infty, frac1n,frac12nrightarrow 0$, so we can replace $frac12n$ with $frac1n$. Now hence, $frac4n(1+frac12n)n(1+frac1n)×(1+frac1n)^-n=4×(1+frac1n)^-n rightarrow 4× e^-1$
$endgroup$
$begingroup$
The last step is a little too fast. Can you justify why you can replace the two factors by their limits $4$ and $e^-1$, while you still have an infinite product for all $n$.
$endgroup$
– Yves Daoust
Apr 30 at 7:14
$begingroup$
I justified....
$endgroup$
– Shamim Akhtar
Apr 30 at 7:32
$begingroup$
No, you didn't add a word. How is it that $sqrt[n]prod_1,n(1+frac1k)^kto e$ ?
$endgroup$
– Yves Daoust
Apr 30 at 7:34
add a comment |
$begingroup$
If we let $a_n=frac[(n+1)(n+2)...(2n)]n^n=frac(2n)!n!n^n$, then $frac[(n+1)(n+2)...(2n)]^frac1nn=(a_n)^frac1n$. Then $fraca_n+1a_n=frac(2n+2)!(2n)!×fracn!(n+1)!×fracn^n(n+1)^n+1=frac(2n+1)(2n+2)(n+1)×fracn^n(n+1)^n+1=frac2(2n+1)(n+1)×fracn^n(n+1)^n+1=frac4n(1+frac12n)n(1+frac1n)×(1+frac1n)^-nrightarrow4×e^-1$.
Edit:explaining the last step explicitly... note that as $nrightarrow infty, frac1n,frac12nrightarrow 0$, so we can replace $frac12n$ with $frac1n$. Now hence, $frac4n(1+frac12n)n(1+frac1n)×(1+frac1n)^-n=4×(1+frac1n)^-n rightarrow 4× e^-1$
$endgroup$
$begingroup$
The last step is a little too fast. Can you justify why you can replace the two factors by their limits $4$ and $e^-1$, while you still have an infinite product for all $n$.
$endgroup$
– Yves Daoust
Apr 30 at 7:14
$begingroup$
I justified....
$endgroup$
– Shamim Akhtar
Apr 30 at 7:32
$begingroup$
No, you didn't add a word. How is it that $sqrt[n]prod_1,n(1+frac1k)^kto e$ ?
$endgroup$
– Yves Daoust
Apr 30 at 7:34
add a comment |
$begingroup$
If we let $a_n=frac[(n+1)(n+2)...(2n)]n^n=frac(2n)!n!n^n$, then $frac[(n+1)(n+2)...(2n)]^frac1nn=(a_n)^frac1n$. Then $fraca_n+1a_n=frac(2n+2)!(2n)!×fracn!(n+1)!×fracn^n(n+1)^n+1=frac(2n+1)(2n+2)(n+1)×fracn^n(n+1)^n+1=frac2(2n+1)(n+1)×fracn^n(n+1)^n+1=frac4n(1+frac12n)n(1+frac1n)×(1+frac1n)^-nrightarrow4×e^-1$.
Edit:explaining the last step explicitly... note that as $nrightarrow infty, frac1n,frac12nrightarrow 0$, so we can replace $frac12n$ with $frac1n$. Now hence, $frac4n(1+frac12n)n(1+frac1n)×(1+frac1n)^-n=4×(1+frac1n)^-n rightarrow 4× e^-1$
$endgroup$
If we let $a_n=frac[(n+1)(n+2)...(2n)]n^n=frac(2n)!n!n^n$, then $frac[(n+1)(n+2)...(2n)]^frac1nn=(a_n)^frac1n$. Then $fraca_n+1a_n=frac(2n+2)!(2n)!×fracn!(n+1)!×fracn^n(n+1)^n+1=frac(2n+1)(2n+2)(n+1)×fracn^n(n+1)^n+1=frac2(2n+1)(n+1)×fracn^n(n+1)^n+1=frac4n(1+frac12n)n(1+frac1n)×(1+frac1n)^-nrightarrow4×e^-1$.
Edit:explaining the last step explicitly... note that as $nrightarrow infty, frac1n,frac12nrightarrow 0$, so we can replace $frac12n$ with $frac1n$. Now hence, $frac4n(1+frac12n)n(1+frac1n)×(1+frac1n)^-n=4×(1+frac1n)^-n rightarrow 4× e^-1$
edited Apr 30 at 7:32
answered Apr 30 at 7:01
Shamim AkhtarShamim Akhtar
54919
54919
$begingroup$
The last step is a little too fast. Can you justify why you can replace the two factors by their limits $4$ and $e^-1$, while you still have an infinite product for all $n$.
$endgroup$
– Yves Daoust
Apr 30 at 7:14
$begingroup$
I justified....
$endgroup$
– Shamim Akhtar
Apr 30 at 7:32
$begingroup$
No, you didn't add a word. How is it that $sqrt[n]prod_1,n(1+frac1k)^kto e$ ?
$endgroup$
– Yves Daoust
Apr 30 at 7:34
add a comment |
$begingroup$
The last step is a little too fast. Can you justify why you can replace the two factors by their limits $4$ and $e^-1$, while you still have an infinite product for all $n$.
$endgroup$
– Yves Daoust
Apr 30 at 7:14
$begingroup$
I justified....
$endgroup$
– Shamim Akhtar
Apr 30 at 7:32
$begingroup$
No, you didn't add a word. How is it that $sqrt[n]prod_1,n(1+frac1k)^kto e$ ?
$endgroup$
– Yves Daoust
Apr 30 at 7:34
$begingroup$
The last step is a little too fast. Can you justify why you can replace the two factors by their limits $4$ and $e^-1$, while you still have an infinite product for all $n$.
$endgroup$
– Yves Daoust
Apr 30 at 7:14
$begingroup$
The last step is a little too fast. Can you justify why you can replace the two factors by their limits $4$ and $e^-1$, while you still have an infinite product for all $n$.
$endgroup$
– Yves Daoust
Apr 30 at 7:14
$begingroup$
I justified....
$endgroup$
– Shamim Akhtar
Apr 30 at 7:32
$begingroup$
I justified....
$endgroup$
– Shamim Akhtar
Apr 30 at 7:32
$begingroup$
No, you didn't add a word. How is it that $sqrt[n]prod_1,n(1+frac1k)^kto e$ ?
$endgroup$
– Yves Daoust
Apr 30 at 7:34
$begingroup$
No, you didn't add a word. How is it that $sqrt[n]prod_1,n(1+frac1k)^kto e$ ?
$endgroup$
– Yves Daoust
Apr 30 at 7:34
add a comment |
$begingroup$
By taking logs of both sides we can get:
$$L=lim_ntoinftyfracleft[(n+1)(n+2)(n+3)...(2n)right]^1/nn$$
$$ln(L)=lim_ntoinftyfrac1nlnleft[(n+1)(n+2)(n+3)...(2n)right]-ln(n)$$
$$ln(L)=lim_ntoinftyfrac1nsum_i=1^nln(n+i)-ln(n)$$
And I am sure there is a formula for the summation of logs in this form. Alternatively we can say:
$$ln(L)=lim_ntoinftyfrac1nlnleft(frac(2n)!n!right)-ln(n)$$
$endgroup$
add a comment |
$begingroup$
By taking logs of both sides we can get:
$$L=lim_ntoinftyfracleft[(n+1)(n+2)(n+3)...(2n)right]^1/nn$$
$$ln(L)=lim_ntoinftyfrac1nlnleft[(n+1)(n+2)(n+3)...(2n)right]-ln(n)$$
$$ln(L)=lim_ntoinftyfrac1nsum_i=1^nln(n+i)-ln(n)$$
And I am sure there is a formula for the summation of logs in this form. Alternatively we can say:
$$ln(L)=lim_ntoinftyfrac1nlnleft(frac(2n)!n!right)-ln(n)$$
$endgroup$
add a comment |
$begingroup$
By taking logs of both sides we can get:
$$L=lim_ntoinftyfracleft[(n+1)(n+2)(n+3)...(2n)right]^1/nn$$
$$ln(L)=lim_ntoinftyfrac1nlnleft[(n+1)(n+2)(n+3)...(2n)right]-ln(n)$$
$$ln(L)=lim_ntoinftyfrac1nsum_i=1^nln(n+i)-ln(n)$$
And I am sure there is a formula for the summation of logs in this form. Alternatively we can say:
$$ln(L)=lim_ntoinftyfrac1nlnleft(frac(2n)!n!right)-ln(n)$$
$endgroup$
By taking logs of both sides we can get:
$$L=lim_ntoinftyfracleft[(n+1)(n+2)(n+3)...(2n)right]^1/nn$$
$$ln(L)=lim_ntoinftyfrac1nlnleft[(n+1)(n+2)(n+3)...(2n)right]-ln(n)$$
$$ln(L)=lim_ntoinftyfrac1nsum_i=1^nln(n+i)-ln(n)$$
And I am sure there is a formula for the summation of logs in this form. Alternatively we can say:
$$ln(L)=lim_ntoinftyfrac1nlnleft(frac(2n)!n!right)-ln(n)$$
answered Apr 30 at 15:14
Henry LeeHenry Lee
2,288319
2,288319
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3207894%2fhow-do-i-show-lim-n-rightarrow-infty-fracn1n2-2n-frac1n%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown