Understanding the oracle in Deutsch's algorithmHow is the oracle in Grover's search algorithm implemented?How exactly does Simon's algorithm solve the Simon's problem?Grover's algorithm: what to input to Oracle?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?How would I implement the quantum oracle in Deutsch's algorithm?How is the Deutsch-Jozsa algorithm faster than classical for practical implementation?How to create the oracle matrix in Grover's algorithm?How to prove that the query oracle is unitary?How does an oracle function in Grover's algorithm actually work?Grover's algorithm – DES circuit as oracle?

How could Catholicism have incorporated witchcraft into its dogma?

What is the best linguistic term for describing the kw > p / gw > b change, and its usual companion s > h

Is it ok to put a subplot to a story that is never meant to contribute to the development of the main plot?

Different PCB color ( is it different material? )

What does "Marchentalender" on the front of a postcard mean?

Is there any use case for the bottom type as a function parameter type?

How many chess players are over 2500 Elo?

1960s sci-fi novella with a character who is treated as invisible by being ignored

Restoring order in a deck of playing cards

Apparent Ring of Craters on the Moon

Crossword gone overboard

Why does the UK have more political parties than the US?

Yandex Programming Contest: Alarms

Black-and-white film where monster/alien gets fried

Why does the 6502 have the BIT instruction?

What is the 中 in ダウンロード中?

Is there an explanation for Austria's Freedom Party virtually retaining its vote share despite recent scandal?

NL - iterating all edges of a graph in log space

Ticket sales for Queen at the Live Aid

Could IPv6 make NAT / port numbers redundant?

What's the connection between "kicking a pigeon" and "how a bill becomes a law"?

How can I prevent interns from being expendable?

What does uniform continuity mean exactly?

Can a non-EU citizen travel within schengen zone freely without passport?



Understanding the oracle in Deutsch's algorithm


How is the oracle in Grover's search algorithm implemented?How exactly does Simon's algorithm solve the Simon's problem?Grover's algorithm: what to input to Oracle?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?How would I implement the quantum oracle in Deutsch's algorithm?How is the Deutsch-Jozsa algorithm faster than classical for practical implementation?How to create the oracle matrix in Grover's algorithm?How to prove that the query oracle is unitary?How does an oracle function in Grover's algorithm actually work?Grover's algorithm – DES circuit as oracle?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








4












$begingroup$


I am reading John Watrous' notes from his course CPSC 519 on quantum computing. In a pre-discussion before presenting Deutsch's algorithm to determine whether a function is constant or not, the author presents a function $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $, and the diagram:
enter image description here



The inital state is $|0 rangle |1 rangle$, and after the first two Hadamard transforms, will be $$big(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1ranglebig)big(frac 1 sqrt 2 |0rangle-frac 1 sqrt 2 |1ranglebig) .$$



Up to this far I understand. The author then writes: "After performing the $B_f$ operation the state is transformed to:



$$frac 1 2 |0 rangle big(|0 oplus f(0)rangle - |1 oplus f(0)ranglebig) + frac 1 2 |1 rangle big(|0 oplus f(1)rangle) - |1 oplus f(1) ranglebig).$$



I am not sure how this was obtained, from what I understand, the operation should be
$$frac 1 sqrt 2 big( |0rangle + |1ranglebig) otimes big|(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle) oplus f(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle) bigrangle$$ (simply subbing in $x,y$ to $B_f$). Any insights appreciated as this subject is completely new to me, although I have a decent mathematics and computer science background.










share|improve this question











$endgroup$


















    4












    $begingroup$


    I am reading John Watrous' notes from his course CPSC 519 on quantum computing. In a pre-discussion before presenting Deutsch's algorithm to determine whether a function is constant or not, the author presents a function $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $, and the diagram:
    enter image description here



    The inital state is $|0 rangle |1 rangle$, and after the first two Hadamard transforms, will be $$big(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1ranglebig)big(frac 1 sqrt 2 |0rangle-frac 1 sqrt 2 |1ranglebig) .$$



    Up to this far I understand. The author then writes: "After performing the $B_f$ operation the state is transformed to:



    $$frac 1 2 |0 rangle big(|0 oplus f(0)rangle - |1 oplus f(0)ranglebig) + frac 1 2 |1 rangle big(|0 oplus f(1)rangle) - |1 oplus f(1) ranglebig).$$



    I am not sure how this was obtained, from what I understand, the operation should be
    $$frac 1 sqrt 2 big( |0rangle + |1ranglebig) otimes big|(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle) oplus f(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle) bigrangle$$ (simply subbing in $x,y$ to $B_f$). Any insights appreciated as this subject is completely new to me, although I have a decent mathematics and computer science background.










    share|improve this question











    $endgroup$














      4












      4








      4


      1



      $begingroup$


      I am reading John Watrous' notes from his course CPSC 519 on quantum computing. In a pre-discussion before presenting Deutsch's algorithm to determine whether a function is constant or not, the author presents a function $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $, and the diagram:
      enter image description here



      The inital state is $|0 rangle |1 rangle$, and after the first two Hadamard transforms, will be $$big(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1ranglebig)big(frac 1 sqrt 2 |0rangle-frac 1 sqrt 2 |1ranglebig) .$$



      Up to this far I understand. The author then writes: "After performing the $B_f$ operation the state is transformed to:



      $$frac 1 2 |0 rangle big(|0 oplus f(0)rangle - |1 oplus f(0)ranglebig) + frac 1 2 |1 rangle big(|0 oplus f(1)rangle) - |1 oplus f(1) ranglebig).$$



      I am not sure how this was obtained, from what I understand, the operation should be
      $$frac 1 sqrt 2 big( |0rangle + |1ranglebig) otimes big|(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle) oplus f(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle) bigrangle$$ (simply subbing in $x,y$ to $B_f$). Any insights appreciated as this subject is completely new to me, although I have a decent mathematics and computer science background.










      share|improve this question











      $endgroup$




      I am reading John Watrous' notes from his course CPSC 519 on quantum computing. In a pre-discussion before presenting Deutsch's algorithm to determine whether a function is constant or not, the author presents a function $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $, and the diagram:
      enter image description here



      The inital state is $|0 rangle |1 rangle$, and after the first two Hadamard transforms, will be $$big(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1ranglebig)big(frac 1 sqrt 2 |0rangle-frac 1 sqrt 2 |1ranglebig) .$$



      Up to this far I understand. The author then writes: "After performing the $B_f$ operation the state is transformed to:



      $$frac 1 2 |0 rangle big(|0 oplus f(0)rangle - |1 oplus f(0)ranglebig) + frac 1 2 |1 rangle big(|0 oplus f(1)rangle) - |1 oplus f(1) ranglebig).$$



      I am not sure how this was obtained, from what I understand, the operation should be
      $$frac 1 sqrt 2 big( |0rangle + |1ranglebig) otimes big|(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle) oplus f(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle) bigrangle$$ (simply subbing in $x,y$ to $B_f$). Any insights appreciated as this subject is completely new to me, although I have a decent mathematics and computer science background.







      algorithm deutsch-jozsa-algorithm






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited May 15 at 9:34









      Sanchayan Dutta

      7,33241660




      7,33241660










      asked May 14 at 21:25









      IntegrateThisIntegrateThis

      1234




      1234




















          1 Answer
          1






          active

          oldest

          votes


















          8












          $begingroup$

          Remember that when you define the oracle effect as $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $, $f(x)$ is a classical function of a classical 1-bit argument, so you do not have a way to compute $f(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle)$ (a function of a quantum state).



          The quantum oracles that implement classical functions are defined as follows:



          1. Define the effect of the oracle on all basis states for $|xrangle$ and $|yrangle$: $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $.


          2. This will automatically define the effect of the oracle on all superposition states: the oracle is a quantum operation and has to be linear in the state on which it acts. So if you start with a state $frac12 (|00rangle + |10rangle - |01rangle - |11rangle)$ (which is the state after applying Hadamard gates) and apply the oracle, you need to apply oracle to each basis state separately. You'll get


          $$B_f frac12 (|00rangle + |10rangle - |01rangle - |11rangle) = frac12 (B_f|00rangle + B_f|10rangle - B_f|01rangle - B_f|11rangle) =$$



          $$ = frac12 (|0rangle|0 oplus f(0)rangle + |1rangle|0 oplus f(1)rangle - |0rangle|1 oplus f(0)rangle - |1rangle|1 oplus f(1)rangle)$$



          Which is the same as the expression in the notes, up to a different grouping or terms.




          The part about the oracles being defined by their effect on basis states is implicit in a lot of sources I've seen, and is a frequent source of confusion. If you need more mathematical details on this, we ended up writing it up here.






          share|improve this answer









          $endgroup$








          • 3




            $begingroup$
            Another resource that may be helpful is Learn Quantum Computing with Python and Q# which should have the chapter on Deutsch–Jozsa algorithm up shortly! We work though implementing Deutsch–Jozsa in Q# as well as in Python with QuTiP. <manning.com/books/…>
            $endgroup$
            – Dr. Sarah Kaiser
            May 14 at 22:00











          • $begingroup$
            Thanks so much for your help! I am very grateful :)
            $endgroup$
            – IntegrateThis
            May 14 at 23:02











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "694"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f6146%2funderstanding-the-oracle-in-deutschs-algorithm%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          8












          $begingroup$

          Remember that when you define the oracle effect as $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $, $f(x)$ is a classical function of a classical 1-bit argument, so you do not have a way to compute $f(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle)$ (a function of a quantum state).



          The quantum oracles that implement classical functions are defined as follows:



          1. Define the effect of the oracle on all basis states for $|xrangle$ and $|yrangle$: $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $.


          2. This will automatically define the effect of the oracle on all superposition states: the oracle is a quantum operation and has to be linear in the state on which it acts. So if you start with a state $frac12 (|00rangle + |10rangle - |01rangle - |11rangle)$ (which is the state after applying Hadamard gates) and apply the oracle, you need to apply oracle to each basis state separately. You'll get


          $$B_f frac12 (|00rangle + |10rangle - |01rangle - |11rangle) = frac12 (B_f|00rangle + B_f|10rangle - B_f|01rangle - B_f|11rangle) =$$



          $$ = frac12 (|0rangle|0 oplus f(0)rangle + |1rangle|0 oplus f(1)rangle - |0rangle|1 oplus f(0)rangle - |1rangle|1 oplus f(1)rangle)$$



          Which is the same as the expression in the notes, up to a different grouping or terms.




          The part about the oracles being defined by their effect on basis states is implicit in a lot of sources I've seen, and is a frequent source of confusion. If you need more mathematical details on this, we ended up writing it up here.






          share|improve this answer









          $endgroup$








          • 3




            $begingroup$
            Another resource that may be helpful is Learn Quantum Computing with Python and Q# which should have the chapter on Deutsch–Jozsa algorithm up shortly! We work though implementing Deutsch–Jozsa in Q# as well as in Python with QuTiP. <manning.com/books/…>
            $endgroup$
            – Dr. Sarah Kaiser
            May 14 at 22:00











          • $begingroup$
            Thanks so much for your help! I am very grateful :)
            $endgroup$
            – IntegrateThis
            May 14 at 23:02















          8












          $begingroup$

          Remember that when you define the oracle effect as $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $, $f(x)$ is a classical function of a classical 1-bit argument, so you do not have a way to compute $f(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle)$ (a function of a quantum state).



          The quantum oracles that implement classical functions are defined as follows:



          1. Define the effect of the oracle on all basis states for $|xrangle$ and $|yrangle$: $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $.


          2. This will automatically define the effect of the oracle on all superposition states: the oracle is a quantum operation and has to be linear in the state on which it acts. So if you start with a state $frac12 (|00rangle + |10rangle - |01rangle - |11rangle)$ (which is the state after applying Hadamard gates) and apply the oracle, you need to apply oracle to each basis state separately. You'll get


          $$B_f frac12 (|00rangle + |10rangle - |01rangle - |11rangle) = frac12 (B_f|00rangle + B_f|10rangle - B_f|01rangle - B_f|11rangle) =$$



          $$ = frac12 (|0rangle|0 oplus f(0)rangle + |1rangle|0 oplus f(1)rangle - |0rangle|1 oplus f(0)rangle - |1rangle|1 oplus f(1)rangle)$$



          Which is the same as the expression in the notes, up to a different grouping or terms.




          The part about the oracles being defined by their effect on basis states is implicit in a lot of sources I've seen, and is a frequent source of confusion. If you need more mathematical details on this, we ended up writing it up here.






          share|improve this answer









          $endgroup$








          • 3




            $begingroup$
            Another resource that may be helpful is Learn Quantum Computing with Python and Q# which should have the chapter on Deutsch–Jozsa algorithm up shortly! We work though implementing Deutsch–Jozsa in Q# as well as in Python with QuTiP. <manning.com/books/…>
            $endgroup$
            – Dr. Sarah Kaiser
            May 14 at 22:00











          • $begingroup$
            Thanks so much for your help! I am very grateful :)
            $endgroup$
            – IntegrateThis
            May 14 at 23:02













          8












          8








          8





          $begingroup$

          Remember that when you define the oracle effect as $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $, $f(x)$ is a classical function of a classical 1-bit argument, so you do not have a way to compute $f(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle)$ (a function of a quantum state).



          The quantum oracles that implement classical functions are defined as follows:



          1. Define the effect of the oracle on all basis states for $|xrangle$ and $|yrangle$: $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $.


          2. This will automatically define the effect of the oracle on all superposition states: the oracle is a quantum operation and has to be linear in the state on which it acts. So if you start with a state $frac12 (|00rangle + |10rangle - |01rangle - |11rangle)$ (which is the state after applying Hadamard gates) and apply the oracle, you need to apply oracle to each basis state separately. You'll get


          $$B_f frac12 (|00rangle + |10rangle - |01rangle - |11rangle) = frac12 (B_f|00rangle + B_f|10rangle - B_f|01rangle - B_f|11rangle) =$$



          $$ = frac12 (|0rangle|0 oplus f(0)rangle + |1rangle|0 oplus f(1)rangle - |0rangle|1 oplus f(0)rangle - |1rangle|1 oplus f(1)rangle)$$



          Which is the same as the expression in the notes, up to a different grouping or terms.




          The part about the oracles being defined by their effect on basis states is implicit in a lot of sources I've seen, and is a frequent source of confusion. If you need more mathematical details on this, we ended up writing it up here.






          share|improve this answer









          $endgroup$



          Remember that when you define the oracle effect as $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $, $f(x)$ is a classical function of a classical 1-bit argument, so you do not have a way to compute $f(frac 1 sqrt 2 |0rangle +frac 1 sqrt 2 |1rangle)$ (a function of a quantum state).



          The quantum oracles that implement classical functions are defined as follows:



          1. Define the effect of the oracle on all basis states for $|xrangle$ and $|yrangle$: $B_f |x rangle |y rangle = |x rangle |y oplus f(x) rangle $.


          2. This will automatically define the effect of the oracle on all superposition states: the oracle is a quantum operation and has to be linear in the state on which it acts. So if you start with a state $frac12 (|00rangle + |10rangle - |01rangle - |11rangle)$ (which is the state after applying Hadamard gates) and apply the oracle, you need to apply oracle to each basis state separately. You'll get


          $$B_f frac12 (|00rangle + |10rangle - |01rangle - |11rangle) = frac12 (B_f|00rangle + B_f|10rangle - B_f|01rangle - B_f|11rangle) =$$



          $$ = frac12 (|0rangle|0 oplus f(0)rangle + |1rangle|0 oplus f(1)rangle - |0rangle|1 oplus f(0)rangle - |1rangle|1 oplus f(1)rangle)$$



          Which is the same as the expression in the notes, up to a different grouping or terms.




          The part about the oracles being defined by their effect on basis states is implicit in a lot of sources I've seen, and is a frequent source of confusion. If you need more mathematical details on this, we ended up writing it up here.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered May 14 at 21:50









          Mariia MykhailovaMariia Mykhailova

          2,2901212




          2,2901212







          • 3




            $begingroup$
            Another resource that may be helpful is Learn Quantum Computing with Python and Q# which should have the chapter on Deutsch–Jozsa algorithm up shortly! We work though implementing Deutsch–Jozsa in Q# as well as in Python with QuTiP. <manning.com/books/…>
            $endgroup$
            – Dr. Sarah Kaiser
            May 14 at 22:00











          • $begingroup$
            Thanks so much for your help! I am very grateful :)
            $endgroup$
            – IntegrateThis
            May 14 at 23:02












          • 3




            $begingroup$
            Another resource that may be helpful is Learn Quantum Computing with Python and Q# which should have the chapter on Deutsch–Jozsa algorithm up shortly! We work though implementing Deutsch–Jozsa in Q# as well as in Python with QuTiP. <manning.com/books/…>
            $endgroup$
            – Dr. Sarah Kaiser
            May 14 at 22:00











          • $begingroup$
            Thanks so much for your help! I am very grateful :)
            $endgroup$
            – IntegrateThis
            May 14 at 23:02







          3




          3




          $begingroup$
          Another resource that may be helpful is Learn Quantum Computing with Python and Q# which should have the chapter on Deutsch–Jozsa algorithm up shortly! We work though implementing Deutsch–Jozsa in Q# as well as in Python with QuTiP. <manning.com/books/…>
          $endgroup$
          – Dr. Sarah Kaiser
          May 14 at 22:00





          $begingroup$
          Another resource that may be helpful is Learn Quantum Computing with Python and Q# which should have the chapter on Deutsch–Jozsa algorithm up shortly! We work though implementing Deutsch–Jozsa in Q# as well as in Python with QuTiP. <manning.com/books/…>
          $endgroup$
          – Dr. Sarah Kaiser
          May 14 at 22:00













          $begingroup$
          Thanks so much for your help! I am very grateful :)
          $endgroup$
          – IntegrateThis
          May 14 at 23:02




          $begingroup$
          Thanks so much for your help! I am very grateful :)
          $endgroup$
          – IntegrateThis
          May 14 at 23:02

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Quantum Computing Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f6146%2funderstanding-the-oracle-in-deutschs-algorithm%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

          Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

          Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020