Diffie-Hellman with non-prime modulusShortening Diffie Hellman key size through pbkdf?Authenticated Diffie Hellman Key ExchangeHow does SSH use both RSA and Diffie-Hellman?Diffie-Hellman and MIM attack, and server identityIn Ephemeral Diffie Hellman Key Exchange - what is actually ephemeral?DTLS and Ephemeral Diffie-HellmanAre public/private keys needed when using Diffie-Hellman with TLSDiffie Hellman Pre Master Secret too longHow to verify Diffie Hellman uses a “Safe” primeIs the server's private key needed in the Diffie Hellman key exchange?

In Endgame, why were these characters still around?

Is Cola "probably the best-known" Latin word in the world? If not, which might it be?

What happens to the Time Stone

Can Ghost kill White Walkers or Wights?

Casual versus formal jacket

Does this article imply that Turing-Computability is not the same as "effectively computable"?

What does this colon mean? It is not labeling, it is not ternary operator

Is it cheaper to drop cargo than to land it?

Father and Son and Grandsons

Unknowingly ran an infinite loop in terminal

Comment rendre "naysayers" ?

Can fracking help reduce CO2?

Enumerate Derangements

Which industry am I working in? Software development or financial services?

Was Unix ever a single-user OS?

Do I really need diodes to receive MIDI?

Why do money exchangers give different rates to different bills?

Besides the up and down quark, what other quarks are present in daily matter around us?

For a benzene shown in a skeletal structure, what does a substituent to the center of the ring mean?

How can I close a gap between my fence and my neighbor's that's on his side of the property line?

How do I tell my manager that his code review comment is wrong?

Quoting Yourself

What happens if I start too many background jobs?

Pressure inside an infinite ocean?



Diffie-Hellman with non-prime modulus


Shortening Diffie Hellman key size through pbkdf?Authenticated Diffie Hellman Key ExchangeHow does SSH use both RSA and Diffie-Hellman?Diffie-Hellman and MIM attack, and server identityIn Ephemeral Diffie Hellman Key Exchange - what is actually ephemeral?DTLS and Ephemeral Diffie-HellmanAre public/private keys needed when using Diffie-Hellman with TLSDiffie Hellman Pre Master Secret too longHow to verify Diffie Hellman uses a “Safe” primeIs the server's private key needed in the Diffie Hellman key exchange?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3















When using the Diffie-Hellman key-exchange, it is said to be important to use a safe prime. However, if a non-prime modulus with sufficient bit-length is generated, is there an attack that can be used to recover the shared secret from the public communication (g, g^a, g^b, modulus) or to decrypt an encrypted message?










share|improve this question




























    3















    When using the Diffie-Hellman key-exchange, it is said to be important to use a safe prime. However, if a non-prime modulus with sufficient bit-length is generated, is there an attack that can be used to recover the shared secret from the public communication (g, g^a, g^b, modulus) or to decrypt an encrypted message?










    share|improve this question
























      3












      3








      3








      When using the Diffie-Hellman key-exchange, it is said to be important to use a safe prime. However, if a non-prime modulus with sufficient bit-length is generated, is there an attack that can be used to recover the shared secret from the public communication (g, g^a, g^b, modulus) or to decrypt an encrypted message?










      share|improve this question














      When using the Diffie-Hellman key-exchange, it is said to be important to use a safe prime. However, if a non-prime modulus with sufficient bit-length is generated, is there an attack that can be used to recover the shared secret from the public communication (g, g^a, g^b, modulus) or to decrypt an encrypted message?







      cryptography diffie-hellman






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Apr 23 at 4:57









      InfuzionInfuzion

      1286




      1286




















          2 Answers
          2






          active

          oldest

          votes


















          5














          TL;DR: Yes, it possibly could be decrypted.



          NOTE: I originally did not realize your question has a subtle nuance to it. You mention safe primes and then non-primes. But safe primes is a mathematical term. Not every prime is a safe prime! Safe prime is a prime 2p + 1 such that p is also prime. It is not only important that modulus in DH is prime but it should be a safe prime for best security.



          Why you should not use non-primes



          Whether non-primes can be safe depends on what you mean by sufficient length. It may not be possible to reasonably break them, if the numbers are much bigger then usual, but it would very much depend on the exact numbers.



          One of the reasons we use safe primes as modulus (p) is to make sure we generate many possible secrets from the range <0, p). When p is not prime, this may not be the case. The fewer secrets we generate, the easier to brute-force them.



          For example lets say we use g=5, p=25. Then the generated secret s will always be either 0 or 5. Obviously this is much easier to brute-force than all the numbers from 0 to 24. Safe primes (not normal primes) generate large prime subgroups, meaning the secret can have many values, even if not all the possible ones.



          Another even bigger problem is that, if you use a non-prime you would only have to solve the discrete logarithm problem for the factors of p, which is much easier. You can read more on CryptoSE.



          Now as you can see, it is still possible to think of numbers large enough that it would be secure enough. For example if we choose two different primes both large enough to be secure on their own and then multiply them and use the result as p, then this should be secure. But you can't really be sure for arbitrary values as there may be many small factors or the same factors and using unnecessarily large numbers would cost you in performance.



          There also may be other problems I am unaware of.



          Thanks to AleksanderRas for the link to CryptoSE.



          Why you should use safe primes



          The reason to use safe primes is related to the first reason to use primes. Even a prime number may have a small prime group. This means it does not generate many secrets from the range <0,p). Safe primes are better at having large prime groups and therefore generating more secrets making brute-forcing harder. You can read a bit more at CryptoSE.






          share|improve this answer
































            5














            Yes, it would be quite feasible to recover the shared secret, because you would now "only" have the discrete log problem modulo all the primes that make up the composite numbers. This could still take some time but would be possible to do in a reasonable time.



            Also see this question on CryptoSE for more information.






            share|improve this answer























              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "162"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fsecurity.stackexchange.com%2fquestions%2f207868%2fdiffie-hellman-with-non-prime-modulus%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5














              TL;DR: Yes, it possibly could be decrypted.



              NOTE: I originally did not realize your question has a subtle nuance to it. You mention safe primes and then non-primes. But safe primes is a mathematical term. Not every prime is a safe prime! Safe prime is a prime 2p + 1 such that p is also prime. It is not only important that modulus in DH is prime but it should be a safe prime for best security.



              Why you should not use non-primes



              Whether non-primes can be safe depends on what you mean by sufficient length. It may not be possible to reasonably break them, if the numbers are much bigger then usual, but it would very much depend on the exact numbers.



              One of the reasons we use safe primes as modulus (p) is to make sure we generate many possible secrets from the range <0, p). When p is not prime, this may not be the case. The fewer secrets we generate, the easier to brute-force them.



              For example lets say we use g=5, p=25. Then the generated secret s will always be either 0 or 5. Obviously this is much easier to brute-force than all the numbers from 0 to 24. Safe primes (not normal primes) generate large prime subgroups, meaning the secret can have many values, even if not all the possible ones.



              Another even bigger problem is that, if you use a non-prime you would only have to solve the discrete logarithm problem for the factors of p, which is much easier. You can read more on CryptoSE.



              Now as you can see, it is still possible to think of numbers large enough that it would be secure enough. For example if we choose two different primes both large enough to be secure on their own and then multiply them and use the result as p, then this should be secure. But you can't really be sure for arbitrary values as there may be many small factors or the same factors and using unnecessarily large numbers would cost you in performance.



              There also may be other problems I am unaware of.



              Thanks to AleksanderRas for the link to CryptoSE.



              Why you should use safe primes



              The reason to use safe primes is related to the first reason to use primes. Even a prime number may have a small prime group. This means it does not generate many secrets from the range <0,p). Safe primes are better at having large prime groups and therefore generating more secrets making brute-forcing harder. You can read a bit more at CryptoSE.






              share|improve this answer





























                5














                TL;DR: Yes, it possibly could be decrypted.



                NOTE: I originally did not realize your question has a subtle nuance to it. You mention safe primes and then non-primes. But safe primes is a mathematical term. Not every prime is a safe prime! Safe prime is a prime 2p + 1 such that p is also prime. It is not only important that modulus in DH is prime but it should be a safe prime for best security.



                Why you should not use non-primes



                Whether non-primes can be safe depends on what you mean by sufficient length. It may not be possible to reasonably break them, if the numbers are much bigger then usual, but it would very much depend on the exact numbers.



                One of the reasons we use safe primes as modulus (p) is to make sure we generate many possible secrets from the range <0, p). When p is not prime, this may not be the case. The fewer secrets we generate, the easier to brute-force them.



                For example lets say we use g=5, p=25. Then the generated secret s will always be either 0 or 5. Obviously this is much easier to brute-force than all the numbers from 0 to 24. Safe primes (not normal primes) generate large prime subgroups, meaning the secret can have many values, even if not all the possible ones.



                Another even bigger problem is that, if you use a non-prime you would only have to solve the discrete logarithm problem for the factors of p, which is much easier. You can read more on CryptoSE.



                Now as you can see, it is still possible to think of numbers large enough that it would be secure enough. For example if we choose two different primes both large enough to be secure on their own and then multiply them and use the result as p, then this should be secure. But you can't really be sure for arbitrary values as there may be many small factors or the same factors and using unnecessarily large numbers would cost you in performance.



                There also may be other problems I am unaware of.



                Thanks to AleksanderRas for the link to CryptoSE.



                Why you should use safe primes



                The reason to use safe primes is related to the first reason to use primes. Even a prime number may have a small prime group. This means it does not generate many secrets from the range <0,p). Safe primes are better at having large prime groups and therefore generating more secrets making brute-forcing harder. You can read a bit more at CryptoSE.






                share|improve this answer



























                  5












                  5








                  5







                  TL;DR: Yes, it possibly could be decrypted.



                  NOTE: I originally did not realize your question has a subtle nuance to it. You mention safe primes and then non-primes. But safe primes is a mathematical term. Not every prime is a safe prime! Safe prime is a prime 2p + 1 such that p is also prime. It is not only important that modulus in DH is prime but it should be a safe prime for best security.



                  Why you should not use non-primes



                  Whether non-primes can be safe depends on what you mean by sufficient length. It may not be possible to reasonably break them, if the numbers are much bigger then usual, but it would very much depend on the exact numbers.



                  One of the reasons we use safe primes as modulus (p) is to make sure we generate many possible secrets from the range <0, p). When p is not prime, this may not be the case. The fewer secrets we generate, the easier to brute-force them.



                  For example lets say we use g=5, p=25. Then the generated secret s will always be either 0 or 5. Obviously this is much easier to brute-force than all the numbers from 0 to 24. Safe primes (not normal primes) generate large prime subgroups, meaning the secret can have many values, even if not all the possible ones.



                  Another even bigger problem is that, if you use a non-prime you would only have to solve the discrete logarithm problem for the factors of p, which is much easier. You can read more on CryptoSE.



                  Now as you can see, it is still possible to think of numbers large enough that it would be secure enough. For example if we choose two different primes both large enough to be secure on their own and then multiply them and use the result as p, then this should be secure. But you can't really be sure for arbitrary values as there may be many small factors or the same factors and using unnecessarily large numbers would cost you in performance.



                  There also may be other problems I am unaware of.



                  Thanks to AleksanderRas for the link to CryptoSE.



                  Why you should use safe primes



                  The reason to use safe primes is related to the first reason to use primes. Even a prime number may have a small prime group. This means it does not generate many secrets from the range <0,p). Safe primes are better at having large prime groups and therefore generating more secrets making brute-forcing harder. You can read a bit more at CryptoSE.






                  share|improve this answer















                  TL;DR: Yes, it possibly could be decrypted.



                  NOTE: I originally did not realize your question has a subtle nuance to it. You mention safe primes and then non-primes. But safe primes is a mathematical term. Not every prime is a safe prime! Safe prime is a prime 2p + 1 such that p is also prime. It is not only important that modulus in DH is prime but it should be a safe prime for best security.



                  Why you should not use non-primes



                  Whether non-primes can be safe depends on what you mean by sufficient length. It may not be possible to reasonably break them, if the numbers are much bigger then usual, but it would very much depend on the exact numbers.



                  One of the reasons we use safe primes as modulus (p) is to make sure we generate many possible secrets from the range <0, p). When p is not prime, this may not be the case. The fewer secrets we generate, the easier to brute-force them.



                  For example lets say we use g=5, p=25. Then the generated secret s will always be either 0 or 5. Obviously this is much easier to brute-force than all the numbers from 0 to 24. Safe primes (not normal primes) generate large prime subgroups, meaning the secret can have many values, even if not all the possible ones.



                  Another even bigger problem is that, if you use a non-prime you would only have to solve the discrete logarithm problem for the factors of p, which is much easier. You can read more on CryptoSE.



                  Now as you can see, it is still possible to think of numbers large enough that it would be secure enough. For example if we choose two different primes both large enough to be secure on their own and then multiply them and use the result as p, then this should be secure. But you can't really be sure for arbitrary values as there may be many small factors or the same factors and using unnecessarily large numbers would cost you in performance.



                  There also may be other problems I am unaware of.



                  Thanks to AleksanderRas for the link to CryptoSE.



                  Why you should use safe primes



                  The reason to use safe primes is related to the first reason to use primes. Even a prime number may have a small prime group. This means it does not generate many secrets from the range <0,p). Safe primes are better at having large prime groups and therefore generating more secrets making brute-forcing harder. You can read a bit more at CryptoSE.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Apr 24 at 21:22

























                  answered Apr 23 at 7:11









                  Peter HarmannPeter Harmann

                  6,19251527




                  6,19251527























                      5














                      Yes, it would be quite feasible to recover the shared secret, because you would now "only" have the discrete log problem modulo all the primes that make up the composite numbers. This could still take some time but would be possible to do in a reasonable time.



                      Also see this question on CryptoSE for more information.






                      share|improve this answer



























                        5














                        Yes, it would be quite feasible to recover the shared secret, because you would now "only" have the discrete log problem modulo all the primes that make up the composite numbers. This could still take some time but would be possible to do in a reasonable time.



                        Also see this question on CryptoSE for more information.






                        share|improve this answer

























                          5












                          5








                          5







                          Yes, it would be quite feasible to recover the shared secret, because you would now "only" have the discrete log problem modulo all the primes that make up the composite numbers. This could still take some time but would be possible to do in a reasonable time.



                          Also see this question on CryptoSE for more information.






                          share|improve this answer













                          Yes, it would be quite feasible to recover the shared secret, because you would now "only" have the discrete log problem modulo all the primes that make up the composite numbers. This could still take some time but would be possible to do in a reasonable time.



                          Also see this question on CryptoSE for more information.







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered Apr 23 at 7:14









                          AleksanderRasAleksanderRas

                          314111




                          314111



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Information Security Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fsecurity.stackexchange.com%2fquestions%2f207868%2fdiffie-hellman-with-non-prime-modulus%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                              Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                              Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020