Example of compact Riemannian manifold with only one closed geodesic. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Why are we interested in closed geodesics?Existence of geodesic on a compact Riemannian manifoldAre closed geodesics the prime numbers of Riemannian manifolds?Completeness of a Riemannian manifold with boundaryTotally geodesic hypersurface in compact hyperbolic manifoldExistence of closed, non self-intersecting geodesics on compact manifoldsExample for conjugate points with only one connecting geodesicExample for infinitely many points with more than one minimizing geodesic to a point?Compact totally geodesic submanifolds in manifold with positive sectional curvatureClosed geodesic on a non-simply connected Riemannian manifold
Sum letters are not two different
What is "gratricide"?
SF book about people trapped in a series of worlds they imagine
Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?
How do living politicians protect their readily obtainable signatures from misuse?
Question about debouncing - delay of state change
Has negative voting ever been officially implemented in elections, or seriously proposed, or even studied?
Is there hard evidence that the grant peer review system performs significantly better than random?
Is grep documentation about ignoring case wrong, since it doesn't ignore case in filenames?
Performance gap between vector<bool> and array
Dating a Former Employee
Why do we bend a book to keep it straight?
Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?
How does light 'choose' between wave and particle behaviour?
Is there any word for a place full of confusion?
Why do we need to use the builder design pattern when we can do the same thing with setters?
What would you call this weird metallic apparatus that allows you to lift people?
Illegal assignment from sObject to Id
Maximum summed subsequences with non-adjacent items
Trademark violation for app?
How come Sam didn't become Lord of Horn Hill?
Did Deadpool rescue all of the X-Force?
Why is Nikon 1.4g better when Nikon 1.8g is sharper?
Project Euler #1 in C++
Example of compact Riemannian manifold with only one closed geodesic.
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Why are we interested in closed geodesics?Existence of geodesic on a compact Riemannian manifoldAre closed geodesics the prime numbers of Riemannian manifolds?Completeness of a Riemannian manifold with boundaryTotally geodesic hypersurface in compact hyperbolic manifoldExistence of closed, non self-intersecting geodesics on compact manifoldsExample for conjugate points with only one connecting geodesicExample for infinitely many points with more than one minimizing geodesic to a point?Compact totally geodesic submanifolds in manifold with positive sectional curvatureClosed geodesic on a non-simply connected Riemannian manifold
$begingroup$
The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.
Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2
If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?
And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?
1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.
2 By the theorem of the three geodesics, this example cannot be a topological sphere.
differential-geometry examples-counterexamples geodesic
$endgroup$
add a comment |
$begingroup$
The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.
Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2
If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?
And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?
1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.
2 By the theorem of the three geodesics, this example cannot be a topological sphere.
differential-geometry examples-counterexamples geodesic
$endgroup$
add a comment |
$begingroup$
The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.
Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2
If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?
And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?
1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.
2 By the theorem of the three geodesics, this example cannot be a topological sphere.
differential-geometry examples-counterexamples geodesic
$endgroup$
The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.
Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2
If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?
And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?
1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.
2 By the theorem of the three geodesics, this example cannot be a topological sphere.
differential-geometry examples-counterexamples geodesic
differential-geometry examples-counterexamples geodesic
edited Apr 14 at 19:13
Peter Kagey
asked Apr 12 at 22:57
Peter KageyPeter Kagey
1,63272053
1,63272053
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:
Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.
See for instance this survey article by Burns and Matveev.
This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.
$endgroup$
add a comment |
$begingroup$
If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.
EDIT: Apologies for missing the crucial compactness hypothesis.
$endgroup$
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
Apr 12 at 23:09
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
Apr 12 at 23:10
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
Apr 12 at 23:11
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185649%2fexample-of-compact-riemannian-manifold-with-only-one-closed-geodesic%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:
Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.
See for instance this survey article by Burns and Matveev.
This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.
$endgroup$
add a comment |
$begingroup$
First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:
Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.
See for instance this survey article by Burns and Matveev.
This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.
$endgroup$
add a comment |
$begingroup$
First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:
Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.
See for instance this survey article by Burns and Matveev.
This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.
$endgroup$
First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:
Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.
See for instance this survey article by Burns and Matveev.
This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.
edited Apr 13 at 15:59
answered Apr 12 at 23:15
Moishe KohanMoishe Kohan
49k344111
49k344111
add a comment |
add a comment |
$begingroup$
If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.
EDIT: Apologies for missing the crucial compactness hypothesis.
$endgroup$
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
Apr 12 at 23:09
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
Apr 12 at 23:10
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
Apr 12 at 23:11
add a comment |
$begingroup$
If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.
EDIT: Apologies for missing the crucial compactness hypothesis.
$endgroup$
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
Apr 12 at 23:09
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
Apr 12 at 23:10
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
Apr 12 at 23:11
add a comment |
$begingroup$
If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.
EDIT: Apologies for missing the crucial compactness hypothesis.
$endgroup$
If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.
EDIT: Apologies for missing the crucial compactness hypothesis.
edited Apr 12 at 23:11
answered Apr 12 at 23:08
Ted ShifrinTed Shifrin
65.1k44792
65.1k44792
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
Apr 12 at 23:09
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
Apr 12 at 23:10
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
Apr 12 at 23:11
add a comment |
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
Apr 12 at 23:09
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
Apr 12 at 23:10
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
Apr 12 at 23:11
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
Apr 12 at 23:09
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
Apr 12 at 23:09
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
Apr 12 at 23:10
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
Apr 12 at 23:10
1
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
Apr 12 at 23:11
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
Apr 12 at 23:11
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185649%2fexample-of-compact-riemannian-manifold-with-only-one-closed-geodesic%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown