Bounding the absolute value of a function with an integralProve that the Riemann integral of this function is zeroThe absolute value of a Riemann integrable function is Riemann integrable.Problem on using the definition of Riemann IntegralWhat is $int f$ if $f$ is not Riemann integrable in the reverse direction of this theoremEstimating the Riemann integral of $f$ using an upper bound for $f$Limit of an integrable function on [0,1]Why was it necessary for the Riemann integral to consider all partitions and taggings?Help understanding the proof that a Riemann Integrable function is boundedHelp in understanding a boundedness proof for Riemann integrable functionsHow to calculate the upper and lower Riemann sums with respect to this particular partition P?

Shortest amud or daf in Shas?

Why is the S-duct intake on the Tu-154 uniquely oblong?

Hotel booking: Why is Agoda much cheaper than booking.com?

What technology would Dwarves need to forge titanium?

Using `printf` to print variable containing `%` percent sign results in "bash: printf: `p': invalid format character"

How to scale and shift the coordinates of a Graphics object?

Why do academics prefer Mac/Linux?

Is my homebrew Awakened Bear race balanced?

Why is choosing a suitable thermodynamic potential important?

Windows reverting changes made by Linux to FAT32 partion

What color to choose as "danger" if the main color of my app is red

What should I wear to go and sign an employment contract?

In Dutch history two people are referred to as "William III"; are there any more cases where this happens?

Why didn't Daenerys' advisers suggest assassinating Cersei?

How can I monitor the bulk API limit?

What do you call bracelets you wear around the legs?

How to customize the pie chart background in PowerPoint?

Was Tyrion always a poor strategist?

How can sister protect herself from impulse purchases with a credit card?

Should all adjustments be random effects in a mixed linear effect?

Why using a variable as index of a list-item does not retrieve that item with clist_item:Nn?

pwaS eht tirsf dna tasl setterl fo hace dorw

How to laser-level close to a surface

Is it a good idea to teach algorithm courses using pseudocode?



Bounding the absolute value of a function with an integral


Prove that the Riemann integral of this function is zeroThe absolute value of a Riemann integrable function is Riemann integrable.Problem on using the definition of Riemann IntegralWhat is $int f$ if $f$ is not Riemann integrable in the reverse direction of this theoremEstimating the Riemann integral of $f$ using an upper bound for $f$Limit of an integrable function on [0,1]Why was it necessary for the Riemann integral to consider all partitions and taggings?Help understanding the proof that a Riemann Integrable function is boundedHelp in understanding a boundedness proof for Riemann integrable functionsHow to calculate the upper and lower Riemann sums with respect to this particular partition P?













6












$begingroup$


I am having trouble with the following problem in analysis:



Suppose that $f, f^prime in C([0, 1])$. Prove that for all $x in [0, 1]$
$$
|f(x)| leq int_0^1 (|f(t)| + |f^prime (t)|) dt.
$$



Any pointers? I have tried writing this as a Riemann Sum (given arbitrary tagged partition) but am still not sure how to proceed.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
    $endgroup$
    – Theo Bendit
    May 6 at 3:44






  • 1




    $begingroup$
    Wow, I did not realize this. Should have examined it a little more closely, thanks.
    $endgroup$
    – onesix
    May 6 at 3:50















6












$begingroup$


I am having trouble with the following problem in analysis:



Suppose that $f, f^prime in C([0, 1])$. Prove that for all $x in [0, 1]$
$$
|f(x)| leq int_0^1 (|f(t)| + |f^prime (t)|) dt.
$$



Any pointers? I have tried writing this as a Riemann Sum (given arbitrary tagged partition) but am still not sure how to proceed.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
    $endgroup$
    – Theo Bendit
    May 6 at 3:44






  • 1




    $begingroup$
    Wow, I did not realize this. Should have examined it a little more closely, thanks.
    $endgroup$
    – onesix
    May 6 at 3:50













6












6








6


1



$begingroup$


I am having trouble with the following problem in analysis:



Suppose that $f, f^prime in C([0, 1])$. Prove that for all $x in [0, 1]$
$$
|f(x)| leq int_0^1 (|f(t)| + |f^prime (t)|) dt.
$$



Any pointers? I have tried writing this as a Riemann Sum (given arbitrary tagged partition) but am still not sure how to proceed.










share|cite|improve this question











$endgroup$




I am having trouble with the following problem in analysis:



Suppose that $f, f^prime in C([0, 1])$. Prove that for all $x in [0, 1]$
$$
|f(x)| leq int_0^1 (|f(t)| + |f^prime (t)|) dt.
$$



Any pointers? I have tried writing this as a Riemann Sum (given arbitrary tagged partition) but am still not sure how to proceed.







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 6 at 3:57







onesix

















asked May 6 at 3:24









onesixonesix

616




616







  • 1




    $begingroup$
    The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
    $endgroup$
    – Theo Bendit
    May 6 at 3:44






  • 1




    $begingroup$
    Wow, I did not realize this. Should have examined it a little more closely, thanks.
    $endgroup$
    – onesix
    May 6 at 3:50












  • 1




    $begingroup$
    The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
    $endgroup$
    – Theo Bendit
    May 6 at 3:44






  • 1




    $begingroup$
    Wow, I did not realize this. Should have examined it a little more closely, thanks.
    $endgroup$
    – onesix
    May 6 at 3:50







1




1




$begingroup$
The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
$endgroup$
– Theo Bendit
May 6 at 3:44




$begingroup$
The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
$endgroup$
– Theo Bendit
May 6 at 3:44




1




1




$begingroup$
Wow, I did not realize this. Should have examined it a little more closely, thanks.
$endgroup$
– onesix
May 6 at 3:50




$begingroup$
Wow, I did not realize this. Should have examined it a little more closely, thanks.
$endgroup$
– onesix
May 6 at 3:50










1 Answer
1






active

oldest

votes


















8












$begingroup$

$int_0^1|f(t)| dt$ is the average of $|f(t)|$ in the interval, and $int_0^1|f'(t)|dt$ is the total variation of $f(t)$, if you think about this, it makes sense. By MVT, you have that $$int_0^1|f(t)| dt=|f(a)|$$ for some $ain[0,1]$. Let $xin[0,1]$, WLOG say $x>a$, then beginalign*|f(x)|&leq |f(a)|+|f(x)-f(a)|\
&=int_0^1|f(t)|dt+|int_a^xf'(t)dt|\
&leq int_0^1|f(t)|dt+int_a^x|f'(t)|dt\
&leqint_0^1|f(t)|dt+int_0^1|f'(t)|dt
endalign*






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3215370%2fbounding-the-absolute-value-of-a-function-with-an-integral%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    8












    $begingroup$

    $int_0^1|f(t)| dt$ is the average of $|f(t)|$ in the interval, and $int_0^1|f'(t)|dt$ is the total variation of $f(t)$, if you think about this, it makes sense. By MVT, you have that $$int_0^1|f(t)| dt=|f(a)|$$ for some $ain[0,1]$. Let $xin[0,1]$, WLOG say $x>a$, then beginalign*|f(x)|&leq |f(a)|+|f(x)-f(a)|\
    &=int_0^1|f(t)|dt+|int_a^xf'(t)dt|\
    &leq int_0^1|f(t)|dt+int_a^x|f'(t)|dt\
    &leqint_0^1|f(t)|dt+int_0^1|f'(t)|dt
    endalign*






    share|cite|improve this answer









    $endgroup$

















      8












      $begingroup$

      $int_0^1|f(t)| dt$ is the average of $|f(t)|$ in the interval, and $int_0^1|f'(t)|dt$ is the total variation of $f(t)$, if you think about this, it makes sense. By MVT, you have that $$int_0^1|f(t)| dt=|f(a)|$$ for some $ain[0,1]$. Let $xin[0,1]$, WLOG say $x>a$, then beginalign*|f(x)|&leq |f(a)|+|f(x)-f(a)|\
      &=int_0^1|f(t)|dt+|int_a^xf'(t)dt|\
      &leq int_0^1|f(t)|dt+int_a^x|f'(t)|dt\
      &leqint_0^1|f(t)|dt+int_0^1|f'(t)|dt
      endalign*






      share|cite|improve this answer









      $endgroup$















        8












        8








        8





        $begingroup$

        $int_0^1|f(t)| dt$ is the average of $|f(t)|$ in the interval, and $int_0^1|f'(t)|dt$ is the total variation of $f(t)$, if you think about this, it makes sense. By MVT, you have that $$int_0^1|f(t)| dt=|f(a)|$$ for some $ain[0,1]$. Let $xin[0,1]$, WLOG say $x>a$, then beginalign*|f(x)|&leq |f(a)|+|f(x)-f(a)|\
        &=int_0^1|f(t)|dt+|int_a^xf'(t)dt|\
        &leq int_0^1|f(t)|dt+int_a^x|f'(t)|dt\
        &leqint_0^1|f(t)|dt+int_0^1|f'(t)|dt
        endalign*






        share|cite|improve this answer









        $endgroup$



        $int_0^1|f(t)| dt$ is the average of $|f(t)|$ in the interval, and $int_0^1|f'(t)|dt$ is the total variation of $f(t)$, if you think about this, it makes sense. By MVT, you have that $$int_0^1|f(t)| dt=|f(a)|$$ for some $ain[0,1]$. Let $xin[0,1]$, WLOG say $x>a$, then beginalign*|f(x)|&leq |f(a)|+|f(x)-f(a)|\
        &=int_0^1|f(t)|dt+|int_a^xf'(t)dt|\
        &leq int_0^1|f(t)|dt+int_a^x|f'(t)|dt\
        &leqint_0^1|f(t)|dt+int_0^1|f'(t)|dt
        endalign*







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered May 6 at 4:59









        Julian MejiaJulian Mejia

        2,195314




        2,195314



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3215370%2fbounding-the-absolute-value-of-a-function-with-an-integral%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020