Subgroup and conjugacy classFinite group with conjugacy class of order 2 has nontrivial normal subgroup?Groups with uniform bound on the order of conjugacy classesIf a normal subgroup shares elements with a conjugacy class, then it contains it entirely?Subgroup generated by conjugacy class normal?Normal Group and Conjugacy ClassExistence of g whose conjugacy class is disjoint from a proper subgroupSize of a Conjugacy classFinite groups with only one conjugacy class of maximal subgroupsComplement of a normal subgroup is single conjugacy classSize of conjugacy class in subgroup compared to size of conjugacy class in group

Why does the setUID bit work inconsistently?

Does a windmilling propeller create more drag than a stopped propeller in an engine out scenario

Will this series of events work to drown the Tarrasque?

Have the writers and actors of GOT responded to its poor reception?

How do I balance a campaign consisting of four kobold PCs?

How to get all possible paths in 0/1 matrix better way?

Why does the U.S military use mercenaries?

Bookshelves: the intruder

Why use a retrograde orbit?

Why is Drogon so much better in battle than Rhaegal and Viserion?

Is there any deeper thematic meaning to the white horse that Arya finds in The Bells (S08E05)?

Why would company (decision makers) wait for someone to retire, rather than lay them off, when their role is no longer needed?

Who is frowning in the sentence "Daisy looked at Tom frowning"?

Former Employer just sent me an IP Agreement

In Dutch history two people are referred to as "William III"; are there any more cases where this happens?

Would a "ring language" be possible?

Should all adjustments be random effects in a mixed linear effect?

How to customize the pie chart background in PowerPoint?

How do you cope with rejection?

Why does string strummed with finger sound different from the one strummed with pick?

Why are there five extra turns in tournament Magic?

Error when running ((x++)) as root

What technology would Dwarves need to forge titanium?

Parse a C++14 integer literal



Subgroup and conjugacy class


Finite group with conjugacy class of order 2 has nontrivial normal subgroup?Groups with uniform bound on the order of conjugacy classesIf a normal subgroup shares elements with a conjugacy class, then it contains it entirely?Subgroup generated by conjugacy class normal?Normal Group and Conjugacy ClassExistence of g whose conjugacy class is disjoint from a proper subgroupSize of a Conjugacy classFinite groups with only one conjugacy class of maximal subgroupsComplement of a normal subgroup is single conjugacy classSize of conjugacy class in subgroup compared to size of conjugacy class in group













3












$begingroup$


let $G$ be a group and $C_x$ a conjugacy class, with $|C_x|=n$. prove that $exists Hleq G$ with H being a subgroup of G, that $|G/H|=n$



It easy to proof that this happens with G being a finite group but my problem starts when G is a infinite group because I cannot apply Lagrange theorem and because of that I don't have any ideia of who is H



Any hints?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What does Lagrange's theorem have to do with this problem?
    $endgroup$
    – the_fox
    May 6 at 1:33















3












$begingroup$


let $G$ be a group and $C_x$ a conjugacy class, with $|C_x|=n$. prove that $exists Hleq G$ with H being a subgroup of G, that $|G/H|=n$



It easy to proof that this happens with G being a finite group but my problem starts when G is a infinite group because I cannot apply Lagrange theorem and because of that I don't have any ideia of who is H



Any hints?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What does Lagrange's theorem have to do with this problem?
    $endgroup$
    – the_fox
    May 6 at 1:33













3












3








3


3



$begingroup$


let $G$ be a group and $C_x$ a conjugacy class, with $|C_x|=n$. prove that $exists Hleq G$ with H being a subgroup of G, that $|G/H|=n$



It easy to proof that this happens with G being a finite group but my problem starts when G is a infinite group because I cannot apply Lagrange theorem and because of that I don't have any ideia of who is H



Any hints?










share|cite|improve this question











$endgroup$




let $G$ be a group and $C_x$ a conjugacy class, with $|C_x|=n$. prove that $exists Hleq G$ with H being a subgroup of G, that $|G/H|=n$



It easy to proof that this happens with G being a finite group but my problem starts when G is a infinite group because I cannot apply Lagrange theorem and because of that I don't have any ideia of who is H



Any hints?







abstract-algebra group-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 6 at 1:27









Robert Lewis

49.8k23268




49.8k23268










asked May 6 at 1:20









Enzo MassakiEnzo Massaki

184




184







  • 1




    $begingroup$
    What does Lagrange's theorem have to do with this problem?
    $endgroup$
    – the_fox
    May 6 at 1:33












  • 1




    $begingroup$
    What does Lagrange's theorem have to do with this problem?
    $endgroup$
    – the_fox
    May 6 at 1:33







1




1




$begingroup$
What does Lagrange's theorem have to do with this problem?
$endgroup$
– the_fox
May 6 at 1:33




$begingroup$
What does Lagrange's theorem have to do with this problem?
$endgroup$
– the_fox
May 6 at 1:33










2 Answers
2






active

oldest

votes


















3












$begingroup$

Consider



$F_x = f in G, ; fxf^-1 = x ; tag 1$



that is, $F_x subset G$ is the set of group elements which fix $x in G$ under conjugation; it is easy to see that $F_x$ is in fact a subgroup of $G$, since for



$a, b in F_x tag 2$



we have



$(ab)x(ab)^-1 = (ab)x(b^-1a^-1) = a(bxb^-1)a^-1 = axa^-1 = a, tag 3$



and the identity $e in G$ is clearly in $F_x$:



$exe^-1 = exe = xe = x; tag 4$



and



$a in F_x Longleftrightarrow axa^-1 = x Longleftrightarrow a^-1xa = x Longleftrightarrow a^-1 in F_x. tag 5$



Now consider any coset $gF_x$ of $F_x$, where $g in G$; for $f in F_x$ we have



$(gf)x(gf)^-1 = (gf)x(f^-1g^-1) = g(fxg^-1)g^-1 = gxg^-1, tag 6$



which shows that elements $gf in gF_x$ all take $x$ to $gxg^-1$ under conjugation; in fact, the conjugate $gxg^-1$ only depends on the coset $gF_x$ and not upon its representative $g$; for if



$g_1F_x = g_2F_x, tag 7$



then



$g_1 = g_1e = g_2 f_1 tag 8$



for some $f_1 in F_x$, whence



$g_1xg_1^-1 = (g_2f_1)x(g_2f_1)^-1 = (g_2f_1)x(f_1^-1g_2^-1) = g_2(f_1xf_1^-1)g_2^-1 = g_2xg_2^-1; tag 9$



it follows then, that there is a well-defined map



$phi: G/F_x to C_x; tag10$



$phi$ is injective, for if



$phi(g_1F_x) = phi(g_2F_x), tag11$



then



$g_1xg_1^-1 = g_2xg_2^-1 Longrightarrow (g_2^-1g_1)x(g_1^-1g_2) = x Longrightarrow (g_2^-1g_1)x(g_2^-1g_1)^-1 = x$
$Longrightarrow g_2^-1g_1 in F_x Longrightarrow g_1 = g_2f, ; f in F_x Longrightarrow g_1F_x = g_2fF_x = g_2F_x; tag12$



$phi$ is also surjective, for



$phi(gF_x) = gxg^-1 tag13$



for any conjugate of $x$. Since $phi$ is a bijection, we conclude that



$vert G/F_x vert = vert C_x vert = n, tag14$



$OEDelta$.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Hint: Notice that $C_x$ is an orbit of $x$ under the conjugation action of $G$ (on its own elements). Some elements of $G$ stabilize $x$ when they conjugate $x$ and some elements of $G$ push $x$ to a different member of this orbit.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3215298%2fsubgroup-and-conjugacy-class%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Consider



      $F_x = f in G, ; fxf^-1 = x ; tag 1$



      that is, $F_x subset G$ is the set of group elements which fix $x in G$ under conjugation; it is easy to see that $F_x$ is in fact a subgroup of $G$, since for



      $a, b in F_x tag 2$



      we have



      $(ab)x(ab)^-1 = (ab)x(b^-1a^-1) = a(bxb^-1)a^-1 = axa^-1 = a, tag 3$



      and the identity $e in G$ is clearly in $F_x$:



      $exe^-1 = exe = xe = x; tag 4$



      and



      $a in F_x Longleftrightarrow axa^-1 = x Longleftrightarrow a^-1xa = x Longleftrightarrow a^-1 in F_x. tag 5$



      Now consider any coset $gF_x$ of $F_x$, where $g in G$; for $f in F_x$ we have



      $(gf)x(gf)^-1 = (gf)x(f^-1g^-1) = g(fxg^-1)g^-1 = gxg^-1, tag 6$



      which shows that elements $gf in gF_x$ all take $x$ to $gxg^-1$ under conjugation; in fact, the conjugate $gxg^-1$ only depends on the coset $gF_x$ and not upon its representative $g$; for if



      $g_1F_x = g_2F_x, tag 7$



      then



      $g_1 = g_1e = g_2 f_1 tag 8$



      for some $f_1 in F_x$, whence



      $g_1xg_1^-1 = (g_2f_1)x(g_2f_1)^-1 = (g_2f_1)x(f_1^-1g_2^-1) = g_2(f_1xf_1^-1)g_2^-1 = g_2xg_2^-1; tag 9$



      it follows then, that there is a well-defined map



      $phi: G/F_x to C_x; tag10$



      $phi$ is injective, for if



      $phi(g_1F_x) = phi(g_2F_x), tag11$



      then



      $g_1xg_1^-1 = g_2xg_2^-1 Longrightarrow (g_2^-1g_1)x(g_1^-1g_2) = x Longrightarrow (g_2^-1g_1)x(g_2^-1g_1)^-1 = x$
      $Longrightarrow g_2^-1g_1 in F_x Longrightarrow g_1 = g_2f, ; f in F_x Longrightarrow g_1F_x = g_2fF_x = g_2F_x; tag12$



      $phi$ is also surjective, for



      $phi(gF_x) = gxg^-1 tag13$



      for any conjugate of $x$. Since $phi$ is a bijection, we conclude that



      $vert G/F_x vert = vert C_x vert = n, tag14$



      $OEDelta$.






      share|cite|improve this answer









      $endgroup$

















        3












        $begingroup$

        Consider



        $F_x = f in G, ; fxf^-1 = x ; tag 1$



        that is, $F_x subset G$ is the set of group elements which fix $x in G$ under conjugation; it is easy to see that $F_x$ is in fact a subgroup of $G$, since for



        $a, b in F_x tag 2$



        we have



        $(ab)x(ab)^-1 = (ab)x(b^-1a^-1) = a(bxb^-1)a^-1 = axa^-1 = a, tag 3$



        and the identity $e in G$ is clearly in $F_x$:



        $exe^-1 = exe = xe = x; tag 4$



        and



        $a in F_x Longleftrightarrow axa^-1 = x Longleftrightarrow a^-1xa = x Longleftrightarrow a^-1 in F_x. tag 5$



        Now consider any coset $gF_x$ of $F_x$, where $g in G$; for $f in F_x$ we have



        $(gf)x(gf)^-1 = (gf)x(f^-1g^-1) = g(fxg^-1)g^-1 = gxg^-1, tag 6$



        which shows that elements $gf in gF_x$ all take $x$ to $gxg^-1$ under conjugation; in fact, the conjugate $gxg^-1$ only depends on the coset $gF_x$ and not upon its representative $g$; for if



        $g_1F_x = g_2F_x, tag 7$



        then



        $g_1 = g_1e = g_2 f_1 tag 8$



        for some $f_1 in F_x$, whence



        $g_1xg_1^-1 = (g_2f_1)x(g_2f_1)^-1 = (g_2f_1)x(f_1^-1g_2^-1) = g_2(f_1xf_1^-1)g_2^-1 = g_2xg_2^-1; tag 9$



        it follows then, that there is a well-defined map



        $phi: G/F_x to C_x; tag10$



        $phi$ is injective, for if



        $phi(g_1F_x) = phi(g_2F_x), tag11$



        then



        $g_1xg_1^-1 = g_2xg_2^-1 Longrightarrow (g_2^-1g_1)x(g_1^-1g_2) = x Longrightarrow (g_2^-1g_1)x(g_2^-1g_1)^-1 = x$
        $Longrightarrow g_2^-1g_1 in F_x Longrightarrow g_1 = g_2f, ; f in F_x Longrightarrow g_1F_x = g_2fF_x = g_2F_x; tag12$



        $phi$ is also surjective, for



        $phi(gF_x) = gxg^-1 tag13$



        for any conjugate of $x$. Since $phi$ is a bijection, we conclude that



        $vert G/F_x vert = vert C_x vert = n, tag14$



        $OEDelta$.






        share|cite|improve this answer









        $endgroup$















          3












          3








          3





          $begingroup$

          Consider



          $F_x = f in G, ; fxf^-1 = x ; tag 1$



          that is, $F_x subset G$ is the set of group elements which fix $x in G$ under conjugation; it is easy to see that $F_x$ is in fact a subgroup of $G$, since for



          $a, b in F_x tag 2$



          we have



          $(ab)x(ab)^-1 = (ab)x(b^-1a^-1) = a(bxb^-1)a^-1 = axa^-1 = a, tag 3$



          and the identity $e in G$ is clearly in $F_x$:



          $exe^-1 = exe = xe = x; tag 4$



          and



          $a in F_x Longleftrightarrow axa^-1 = x Longleftrightarrow a^-1xa = x Longleftrightarrow a^-1 in F_x. tag 5$



          Now consider any coset $gF_x$ of $F_x$, where $g in G$; for $f in F_x$ we have



          $(gf)x(gf)^-1 = (gf)x(f^-1g^-1) = g(fxg^-1)g^-1 = gxg^-1, tag 6$



          which shows that elements $gf in gF_x$ all take $x$ to $gxg^-1$ under conjugation; in fact, the conjugate $gxg^-1$ only depends on the coset $gF_x$ and not upon its representative $g$; for if



          $g_1F_x = g_2F_x, tag 7$



          then



          $g_1 = g_1e = g_2 f_1 tag 8$



          for some $f_1 in F_x$, whence



          $g_1xg_1^-1 = (g_2f_1)x(g_2f_1)^-1 = (g_2f_1)x(f_1^-1g_2^-1) = g_2(f_1xf_1^-1)g_2^-1 = g_2xg_2^-1; tag 9$



          it follows then, that there is a well-defined map



          $phi: G/F_x to C_x; tag10$



          $phi$ is injective, for if



          $phi(g_1F_x) = phi(g_2F_x), tag11$



          then



          $g_1xg_1^-1 = g_2xg_2^-1 Longrightarrow (g_2^-1g_1)x(g_1^-1g_2) = x Longrightarrow (g_2^-1g_1)x(g_2^-1g_1)^-1 = x$
          $Longrightarrow g_2^-1g_1 in F_x Longrightarrow g_1 = g_2f, ; f in F_x Longrightarrow g_1F_x = g_2fF_x = g_2F_x; tag12$



          $phi$ is also surjective, for



          $phi(gF_x) = gxg^-1 tag13$



          for any conjugate of $x$. Since $phi$ is a bijection, we conclude that



          $vert G/F_x vert = vert C_x vert = n, tag14$



          $OEDelta$.






          share|cite|improve this answer









          $endgroup$



          Consider



          $F_x = f in G, ; fxf^-1 = x ; tag 1$



          that is, $F_x subset G$ is the set of group elements which fix $x in G$ under conjugation; it is easy to see that $F_x$ is in fact a subgroup of $G$, since for



          $a, b in F_x tag 2$



          we have



          $(ab)x(ab)^-1 = (ab)x(b^-1a^-1) = a(bxb^-1)a^-1 = axa^-1 = a, tag 3$



          and the identity $e in G$ is clearly in $F_x$:



          $exe^-1 = exe = xe = x; tag 4$



          and



          $a in F_x Longleftrightarrow axa^-1 = x Longleftrightarrow a^-1xa = x Longleftrightarrow a^-1 in F_x. tag 5$



          Now consider any coset $gF_x$ of $F_x$, where $g in G$; for $f in F_x$ we have



          $(gf)x(gf)^-1 = (gf)x(f^-1g^-1) = g(fxg^-1)g^-1 = gxg^-1, tag 6$



          which shows that elements $gf in gF_x$ all take $x$ to $gxg^-1$ under conjugation; in fact, the conjugate $gxg^-1$ only depends on the coset $gF_x$ and not upon its representative $g$; for if



          $g_1F_x = g_2F_x, tag 7$



          then



          $g_1 = g_1e = g_2 f_1 tag 8$



          for some $f_1 in F_x$, whence



          $g_1xg_1^-1 = (g_2f_1)x(g_2f_1)^-1 = (g_2f_1)x(f_1^-1g_2^-1) = g_2(f_1xf_1^-1)g_2^-1 = g_2xg_2^-1; tag 9$



          it follows then, that there is a well-defined map



          $phi: G/F_x to C_x; tag10$



          $phi$ is injective, for if



          $phi(g_1F_x) = phi(g_2F_x), tag11$



          then



          $g_1xg_1^-1 = g_2xg_2^-1 Longrightarrow (g_2^-1g_1)x(g_1^-1g_2) = x Longrightarrow (g_2^-1g_1)x(g_2^-1g_1)^-1 = x$
          $Longrightarrow g_2^-1g_1 in F_x Longrightarrow g_1 = g_2f, ; f in F_x Longrightarrow g_1F_x = g_2fF_x = g_2F_x; tag12$



          $phi$ is also surjective, for



          $phi(gF_x) = gxg^-1 tag13$



          for any conjugate of $x$. Since $phi$ is a bijection, we conclude that



          $vert G/F_x vert = vert C_x vert = n, tag14$



          $OEDelta$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered May 6 at 4:59









          Robert LewisRobert Lewis

          49.8k23268




          49.8k23268





















              2












              $begingroup$

              Hint: Notice that $C_x$ is an orbit of $x$ under the conjugation action of $G$ (on its own elements). Some elements of $G$ stabilize $x$ when they conjugate $x$ and some elements of $G$ push $x$ to a different member of this orbit.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                Hint: Notice that $C_x$ is an orbit of $x$ under the conjugation action of $G$ (on its own elements). Some elements of $G$ stabilize $x$ when they conjugate $x$ and some elements of $G$ push $x$ to a different member of this orbit.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Hint: Notice that $C_x$ is an orbit of $x$ under the conjugation action of $G$ (on its own elements). Some elements of $G$ stabilize $x$ when they conjugate $x$ and some elements of $G$ push $x$ to a different member of this orbit.






                  share|cite|improve this answer









                  $endgroup$



                  Hint: Notice that $C_x$ is an orbit of $x$ under the conjugation action of $G$ (on its own elements). Some elements of $G$ stabilize $x$ when they conjugate $x$ and some elements of $G$ push $x$ to a different member of this orbit.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered May 6 at 1:37









                  Eric TowersEric Towers

                  34.3k22371




                  34.3k22371



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3215298%2fsubgroup-and-conjugacy-class%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                      Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                      Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020