Why are there $frac(A+1)(A+2)(B+1)2$ triangles in this grid?What is so special about triangles?!What is the flaw in this proof that all triangles are isosceles?Explanation of formula for distance between triangles in a triangular gridThe number of regions into which a plane is divided by n lines in generic positionWhy does this combinatorics formula work?Consider the graph G0 with 3 components which are triangles.I have a grid of 9x8. How many ways are there of putting 8 chips on this grid such that no two chips are on the same line?How to find the number of triangles in this figure?Converse of theorem of two tangent circlesSolving a recurrence relation in series of triangles.

Symbol for "not absolutely continuous" in Latex

Three column layout

How do I find and plot the intersection of these three surfaces?

Should I hide continue button until tasks are completed?

Do 3D printers really reach 50 micron (0.05 mm) accuracy?

Why is a blank required between "[[" and "-e xxx" in ksh?

Can I travel from Germany to England alone as an unaccompanied minor?

Can a police officer film me on their personal device in my own home?

Children's short story about material that accelerates away from gravity

Polish letters in ASME English template

How well known and how commonly used was Huffman coding in 1979?

Can I use the PWM pins as regular digital input/output pins?

I'm reinstalling my Linux desktop, how do I keep SSH logins working?

“Faire” being used to mean “avoir l’air”?

Conduit Fill and Derating for THHN Cables (outdoor run)

Which centaur is more 'official'?

How to convert object fill in to fine lines?

How to formulate maximum function in a constraint?

Averting Real Women Don’t Wear Dresses

Difference between 'demás' and 'otros'?

How hard is it to sell a home which is currently mortgaged?

Was "I have the farts, again" broadcast from the Moon to the whole world?

One folder two different locations on ubuntu 18.04

What is the olden name for sideburns?



Why are there $frac(A+1)(A+2)(B+1)2$ triangles in this grid?


What is so special about triangles?!What is the flaw in this proof that all triangles are isosceles?Explanation of formula for distance between triangles in a triangular gridThe number of regions into which a plane is divided by n lines in generic positionWhy does this combinatorics formula work?Consider the graph G0 with 3 components which are triangles.I have a grid of 9x8. How many ways are there of putting 8 chips on this grid such that no two chips are on the same line?How to find the number of triangles in this figure?Converse of theorem of two tangent circlesSolving a recurrence relation in series of triangles.






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


Suppose we are to find the number of triangles that exist from the given figure enter image description here



I found one solution that says we let $A$ equal the number of internal lines from the top vertex, $B$ equal the number of internal lines parallel to the base, using the formula below to find the number of $N$ triangles
$$N=frac(A+1)(A+2)(B+1)2$$



With $A$ equal to 2 and $B$ equal to 3, we get $N=24$ triangles.



But can somebody explain why this formula works? How exactly do I derive this?










share|cite|improve this question











$endgroup$


















    3












    $begingroup$


    Suppose we are to find the number of triangles that exist from the given figure enter image description here



    I found one solution that says we let $A$ equal the number of internal lines from the top vertex, $B$ equal the number of internal lines parallel to the base, using the formula below to find the number of $N$ triangles
    $$N=frac(A+1)(A+2)(B+1)2$$



    With $A$ equal to 2 and $B$ equal to 3, we get $N=24$ triangles.



    But can somebody explain why this formula works? How exactly do I derive this?










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      Suppose we are to find the number of triangles that exist from the given figure enter image description here



      I found one solution that says we let $A$ equal the number of internal lines from the top vertex, $B$ equal the number of internal lines parallel to the base, using the formula below to find the number of $N$ triangles
      $$N=frac(A+1)(A+2)(B+1)2$$



      With $A$ equal to 2 and $B$ equal to 3, we get $N=24$ triangles.



      But can somebody explain why this formula works? How exactly do I derive this?










      share|cite|improve this question











      $endgroup$




      Suppose we are to find the number of triangles that exist from the given figure enter image description here



      I found one solution that says we let $A$ equal the number of internal lines from the top vertex, $B$ equal the number of internal lines parallel to the base, using the formula below to find the number of $N$ triangles
      $$N=frac(A+1)(A+2)(B+1)2$$



      With $A$ equal to 2 and $B$ equal to 3, we get $N=24$ triangles.



      But can somebody explain why this formula works? How exactly do I derive this?







      combinatorics algebra-precalculus geometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jun 10 at 9:37









      user21820

      41.1k5 gold badges46 silver badges167 bronze badges




      41.1k5 gold badges46 silver badges167 bronze badges










      asked Jun 10 at 0:44









      Lex_iLex_i

      1607 bronze badges




      1607 bronze badges




















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          A triangle inside the figure has one of its sides being one of the $B+1$ horizontal lines, and the other two sides are two of the $A+2$ slant lines. So the total number of ways of forming a triangle is $displaystyle A+2 choose 2 times B+1 choose 1$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Could you multiply the matrices together for me to show it getting 24? Because when I do it I keep getting 18
            $endgroup$
            – Lex_i
            Jun 10 at 2:10






          • 1




            $begingroup$
            They are binomial coefficients, not matrices. $n choose r$ is the number of ways of choosing $r$ objects from $n$ objects and the formula is $nchoose r=fracn!r!(n-r)!$. In particular, $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1=B+1$.
            $endgroup$
            – CY Aries
            Jun 10 at 2:14










          • $begingroup$
            $n choose 1=fracn!(n-1)!1!=fracntimes (n-1)!(n-1)!times 1=n$ and $n choose 2=fracn!(n-2)!2!=fracn(n-1)times (n-2)!(n-2)!times 2=fracn(n-1)2$.
            $endgroup$
            – CY Aries
            Jun 10 at 2:39










          • $begingroup$
            So $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1$ is just $B+1$.
            $endgroup$
            – CY Aries
            Jun 10 at 2:51


















          0












          $begingroup$

          If we let $x$ to be the number of lines from the top vertex and $y$ to be the number of lines parallel to the base including the base, then we have $x = A+2$ and $y = B+1$. We keep this.



          Now, think about how can we construct a triangle using these lines. First, we need a base, which we can choose from $y$ lines. Then, we need two other lines to construct a triangle but these two lines should intersect at one point (which is top vertex in this case). Therefore, we can actually choose $2$ lines from $x$ lines since all of these $x$ lines intersect at top vertex. So we can choose these $2$ lines with $binomx2 = fracx(x-1)2$. So, in total, we can construct $fracx(x-1)y2$ different triangles. Now, use $x = A+2$, $y = B+1$.






          share|cite|improve this answer









          $endgroup$















            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3256903%2fwhy-are-there-fraca1a2b12-triangles-in-this-grid%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            A triangle inside the figure has one of its sides being one of the $B+1$ horizontal lines, and the other two sides are two of the $A+2$ slant lines. So the total number of ways of forming a triangle is $displaystyle A+2 choose 2 times B+1 choose 1$.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Could you multiply the matrices together for me to show it getting 24? Because when I do it I keep getting 18
              $endgroup$
              – Lex_i
              Jun 10 at 2:10






            • 1




              $begingroup$
              They are binomial coefficients, not matrices. $n choose r$ is the number of ways of choosing $r$ objects from $n$ objects and the formula is $nchoose r=fracn!r!(n-r)!$. In particular, $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1=B+1$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:14










            • $begingroup$
              $n choose 1=fracn!(n-1)!1!=fracntimes (n-1)!(n-1)!times 1=n$ and $n choose 2=fracn!(n-2)!2!=fracn(n-1)times (n-2)!(n-2)!times 2=fracn(n-1)2$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:39










            • $begingroup$
              So $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1$ is just $B+1$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:51















            6












            $begingroup$

            A triangle inside the figure has one of its sides being one of the $B+1$ horizontal lines, and the other two sides are two of the $A+2$ slant lines. So the total number of ways of forming a triangle is $displaystyle A+2 choose 2 times B+1 choose 1$.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Could you multiply the matrices together for me to show it getting 24? Because when I do it I keep getting 18
              $endgroup$
              – Lex_i
              Jun 10 at 2:10






            • 1




              $begingroup$
              They are binomial coefficients, not matrices. $n choose r$ is the number of ways of choosing $r$ objects from $n$ objects and the formula is $nchoose r=fracn!r!(n-r)!$. In particular, $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1=B+1$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:14










            • $begingroup$
              $n choose 1=fracn!(n-1)!1!=fracntimes (n-1)!(n-1)!times 1=n$ and $n choose 2=fracn!(n-2)!2!=fracn(n-1)times (n-2)!(n-2)!times 2=fracn(n-1)2$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:39










            • $begingroup$
              So $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1$ is just $B+1$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:51













            6












            6








            6





            $begingroup$

            A triangle inside the figure has one of its sides being one of the $B+1$ horizontal lines, and the other two sides are two of the $A+2$ slant lines. So the total number of ways of forming a triangle is $displaystyle A+2 choose 2 times B+1 choose 1$.






            share|cite|improve this answer









            $endgroup$



            A triangle inside the figure has one of its sides being one of the $B+1$ horizontal lines, and the other two sides are two of the $A+2$ slant lines. So the total number of ways of forming a triangle is $displaystyle A+2 choose 2 times B+1 choose 1$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jun 10 at 0:53









            CY AriesCY Aries

            21.3k1 gold badge20 silver badges49 bronze badges




            21.3k1 gold badge20 silver badges49 bronze badges











            • $begingroup$
              Could you multiply the matrices together for me to show it getting 24? Because when I do it I keep getting 18
              $endgroup$
              – Lex_i
              Jun 10 at 2:10






            • 1




              $begingroup$
              They are binomial coefficients, not matrices. $n choose r$ is the number of ways of choosing $r$ objects from $n$ objects and the formula is $nchoose r=fracn!r!(n-r)!$. In particular, $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1=B+1$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:14










            • $begingroup$
              $n choose 1=fracn!(n-1)!1!=fracntimes (n-1)!(n-1)!times 1=n$ and $n choose 2=fracn!(n-2)!2!=fracn(n-1)times (n-2)!(n-2)!times 2=fracn(n-1)2$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:39










            • $begingroup$
              So $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1$ is just $B+1$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:51
















            • $begingroup$
              Could you multiply the matrices together for me to show it getting 24? Because when I do it I keep getting 18
              $endgroup$
              – Lex_i
              Jun 10 at 2:10






            • 1




              $begingroup$
              They are binomial coefficients, not matrices. $n choose r$ is the number of ways of choosing $r$ objects from $n$ objects and the formula is $nchoose r=fracn!r!(n-r)!$. In particular, $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1=B+1$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:14










            • $begingroup$
              $n choose 1=fracn!(n-1)!1!=fracntimes (n-1)!(n-1)!times 1=n$ and $n choose 2=fracn!(n-2)!2!=fracn(n-1)times (n-2)!(n-2)!times 2=fracn(n-1)2$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:39










            • $begingroup$
              So $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1$ is just $B+1$.
              $endgroup$
              – CY Aries
              Jun 10 at 2:51















            $begingroup$
            Could you multiply the matrices together for me to show it getting 24? Because when I do it I keep getting 18
            $endgroup$
            – Lex_i
            Jun 10 at 2:10




            $begingroup$
            Could you multiply the matrices together for me to show it getting 24? Because when I do it I keep getting 18
            $endgroup$
            – Lex_i
            Jun 10 at 2:10




            1




            1




            $begingroup$
            They are binomial coefficients, not matrices. $n choose r$ is the number of ways of choosing $r$ objects from $n$ objects and the formula is $nchoose r=fracn!r!(n-r)!$. In particular, $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1=B+1$.
            $endgroup$
            – CY Aries
            Jun 10 at 2:14




            $begingroup$
            They are binomial coefficients, not matrices. $n choose r$ is the number of ways of choosing $r$ objects from $n$ objects and the formula is $nchoose r=fracn!r!(n-r)!$. In particular, $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1=B+1$.
            $endgroup$
            – CY Aries
            Jun 10 at 2:14












            $begingroup$
            $n choose 1=fracn!(n-1)!1!=fracntimes (n-1)!(n-1)!times 1=n$ and $n choose 2=fracn!(n-2)!2!=fracn(n-1)times (n-2)!(n-2)!times 2=fracn(n-1)2$.
            $endgroup$
            – CY Aries
            Jun 10 at 2:39




            $begingroup$
            $n choose 1=fracn!(n-1)!1!=fracntimes (n-1)!(n-1)!times 1=n$ and $n choose 2=fracn!(n-2)!2!=fracn(n-1)times (n-2)!(n-2)!times 2=fracn(n-1)2$.
            $endgroup$
            – CY Aries
            Jun 10 at 2:39












            $begingroup$
            So $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1$ is just $B+1$.
            $endgroup$
            – CY Aries
            Jun 10 at 2:51




            $begingroup$
            So $A+2 choose 2=frac(A+2)(A+1)2$ and $B+1 choose 1$ is just $B+1$.
            $endgroup$
            – CY Aries
            Jun 10 at 2:51













            0












            $begingroup$

            If we let $x$ to be the number of lines from the top vertex and $y$ to be the number of lines parallel to the base including the base, then we have $x = A+2$ and $y = B+1$. We keep this.



            Now, think about how can we construct a triangle using these lines. First, we need a base, which we can choose from $y$ lines. Then, we need two other lines to construct a triangle but these two lines should intersect at one point (which is top vertex in this case). Therefore, we can actually choose $2$ lines from $x$ lines since all of these $x$ lines intersect at top vertex. So we can choose these $2$ lines with $binomx2 = fracx(x-1)2$. So, in total, we can construct $fracx(x-1)y2$ different triangles. Now, use $x = A+2$, $y = B+1$.






            share|cite|improve this answer









            $endgroup$

















              0












              $begingroup$

              If we let $x$ to be the number of lines from the top vertex and $y$ to be the number of lines parallel to the base including the base, then we have $x = A+2$ and $y = B+1$. We keep this.



              Now, think about how can we construct a triangle using these lines. First, we need a base, which we can choose from $y$ lines. Then, we need two other lines to construct a triangle but these two lines should intersect at one point (which is top vertex in this case). Therefore, we can actually choose $2$ lines from $x$ lines since all of these $x$ lines intersect at top vertex. So we can choose these $2$ lines with $binomx2 = fracx(x-1)2$. So, in total, we can construct $fracx(x-1)y2$ different triangles. Now, use $x = A+2$, $y = B+1$.






              share|cite|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                If we let $x$ to be the number of lines from the top vertex and $y$ to be the number of lines parallel to the base including the base, then we have $x = A+2$ and $y = B+1$. We keep this.



                Now, think about how can we construct a triangle using these lines. First, we need a base, which we can choose from $y$ lines. Then, we need two other lines to construct a triangle but these two lines should intersect at one point (which is top vertex in this case). Therefore, we can actually choose $2$ lines from $x$ lines since all of these $x$ lines intersect at top vertex. So we can choose these $2$ lines with $binomx2 = fracx(x-1)2$. So, in total, we can construct $fracx(x-1)y2$ different triangles. Now, use $x = A+2$, $y = B+1$.






                share|cite|improve this answer









                $endgroup$



                If we let $x$ to be the number of lines from the top vertex and $y$ to be the number of lines parallel to the base including the base, then we have $x = A+2$ and $y = B+1$. We keep this.



                Now, think about how can we construct a triangle using these lines. First, we need a base, which we can choose from $y$ lines. Then, we need two other lines to construct a triangle but these two lines should intersect at one point (which is top vertex in this case). Therefore, we can actually choose $2$ lines from $x$ lines since all of these $x$ lines intersect at top vertex. So we can choose these $2$ lines with $binomx2 = fracx(x-1)2$. So, in total, we can construct $fracx(x-1)y2$ different triangles. Now, use $x = A+2$, $y = B+1$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jun 10 at 0:54









                ArsenBerkArsenBerk

                9,6503 gold badges14 silver badges39 bronze badges




                9,6503 gold badges14 silver badges39 bronze badges



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3256903%2fwhy-are-there-fraca1a2b12-triangles-in-this-grid%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                    Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                    Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020