How to quickly solve partial fractions equation? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How can this indefinite integral be solved without partial fractions?Separation of variables and substituion; first integral from the Euler-Differential Equation for the minimal surface problemHow to set up partial fractions?How to solve $int frac,dx(x^3 + x + 1)^3$?How to solve this integral by parts?Integration of rational functions by partial fractionsCompute $int _0 ^infty fracx^alpha1+x^2, mathrm d x$ for $-1<alpha<1$How can $int fracdx(x+a)^2(x+b)^2$ be found?Solve $int frac1cos^2(x)+cos(x)+1dx$How do I solve this trivial complex integral $int^w_0 fracbz(z-a)(z+a)textrmdz$?

Using et al. for a last / senior author rather than for a first author

8 Prisoners wearing hats

Dating a Former Employee

What would be the ideal power source for a cybernetic eye?

How could we fake a moon landing now?

Do square wave exist?

Fundamental Solution of the Pell Equation

What is homebrew?

How to answer "Have you ever been terminated?"

Using audio cues to encourage good posture

An adverb for when you're not exaggerating

Where are Serre’s lectures at Collège de France to be found?

Around usage results

Can you use the Shield Master feat to shove someone before you make an attack by using a Readied action?

How can I use the Python library networkx from Mathematica?

How come Sam didn't become Lord of Horn Hill?

How to tell that you are a giant?

For a new assistant professor in CS, how to build/manage a publication pipeline

Can a new player join a group only when a new campaign starts?

Is there a holomorphic function on open unit disc with this property?

Is there any way for the UK Prime Minister to make a motion directly dependent on Government confidence?

Quick way to create a symlink?

Why do we bend a book to keep it straight?

Can anything be seen from the center of the Boötes void? How dark would it be?



How to quickly solve partial fractions equation?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How can this indefinite integral be solved without partial fractions?Separation of variables and substituion; first integral from the Euler-Differential Equation for the minimal surface problemHow to set up partial fractions?How to solve $int frac,dx(x^3 + x + 1)^3$?How to solve this integral by parts?Integration of rational functions by partial fractionsCompute $int _0 ^infty fracx^alpha1+x^2, mathrm d x$ for $-1<alpha<1$How can $int fracdx(x+a)^2(x+b)^2$ be found?Solve $int frac1cos^2(x)+cos(x)+1dx$How do I solve this trivial complex integral $int^w_0 fracbz(z-a)(z+a)textrmdz$?










6












$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    Apr 12 at 1:25















6












$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    Apr 12 at 1:25













6












6








6


3



$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$




Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.







calculus integration indefinite-integrals quadratics partial-fractions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 12 at 1:28







weno

















asked Apr 12 at 1:15









wenoweno

44311




44311











  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    Apr 12 at 1:25
















  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    Apr 12 at 1:25















$begingroup$
Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
$endgroup$
– Eevee Trainer
Apr 12 at 1:25




$begingroup$
Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
$endgroup$
– Eevee Trainer
Apr 12 at 1:25










4 Answers
4






active

oldest

votes


















6












$begingroup$

Here's your answer
for general $n$.



$dfrac1prod_k=1^n (x-a_k)
=sum_k=1^n dfracb_kx-a_k
$
.



Therefore
$1
=sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
=sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
$
.



Setting
$x = a_i$
for each $i$,
all the terms
except the one with $k=i$
have the factor $a_i-a_i$,
so
$1 = b_iprod_j=1, jne i^n (a_i-a_j)
$

so that
$b_i
=dfrac1prod_j=1, jne i^n (a_i-a_j)
$
.



For $n=2$,
$b_1
=dfrac1a_1-a_2
$
,
$b_2
=dfrac1a_2-a_1
$
.



For $n=3$,
$b_1
=dfrac1(a_1-a_2)(a_1-a_3)
$
,
$b_2
=dfrac1(a_2-a_1)(a_2-a_3)
$
,
$b_3
=dfrac1(a_3-a_1)(a_3-a_2)
$
.






share|cite|improve this answer









$endgroup$




















    8












    $begingroup$

    If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



    Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



    For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
    Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
    $$A_2 = frac 1(3-1)(3+4) = frac114$$



    $$A_3=frac 1(-4-1)(-4-3)=frac135$$






    share|cite|improve this answer









    $endgroup$




















      6












      $begingroup$

      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $-beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        Apr 12 at 1:45










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        Apr 12 at 1:47



















      1












      $begingroup$

      Let $n$,$m$ be integers such that $nge 2$ and $n-1 ge m ge 0$ .Then if the roots of the polynomial in question are all distinct the following formula holds:
      beginequation
      fracx^mprodlimits_j=1^n (x-b_j) = sumlimits_i=1^n frac1x-b_i cdot fracb_i^mprodlimits_j=1,jneq i^n (b_i-b_j)
      endequation

      Now, if the roots are not distinct then it gets more complicated but even at the outset it is clear that we can generate a similar formula by differentiating both sides with respect to the particular root a certain number of times. For example if $n=2$ and $m_1 ge 1$, $m_2 ge 1$ and $mge 0$ the following formula holds true:
      begineqnarray
      fracx^m(x-b_1)^m_1 (x-b_2)^m_2=sumlimits_j=0^m left( sumlimits_l_1=1^m_1 binomm_1+m_2-1-l_1m_2-1(-1)^m_2 b_1^j frac1_l_1=1 binomm-1j-1 + 1_l_1>1 binommj(x-b_1)^l_1-m+j (-b_1+b_2)^m_1+m_2-l_1+
      sumlimits_l_1=1^m_2 binomm_1+m_2-1-l_1m_1-1(-1)^m_1 b_2^j
      frac1_l_1=1 binomm-1j-1 + 1_l_1>1 binommj(x-b_2)^l_1-m+j (-b_2+b_1)^m_1+m_2-l_1
      right)
      endeqnarray



      In[5732]:= ll = ; x =.; b1 =.; b2 =.; m = RandomInteger[0, 10];
      For[count = 1, count <= 100, count++,
      m1, m2 = RandomInteger[1, 5, 2]; x =.; b1 =.; b2 =.;
      xx1 =
      Sum[
      Binomial[m1 + m2 - 1 - l1, m2 - 1] ((-1)^
      m2 b1^j If[l1 == 1, Binomial[m - 1, j - 1],
      Binomial[m, j]])/((x - b1)^(l1 - m + j) (-b1 + b2)^(
      m1 + m2 - l1)), l1, 1, m1, j, 0, m] +
      Sum[ Binomial[m1 + m2 - 1 - l1, m1 - 1] ((-1)^
      m1 b2^j If[l1 == 1, Binomial[m - 1, j - 1],
      Binomial[m, j]])/((x - b2)^(l1 - m + j) (-b2 + b1)^(
      m1 + m2 - l1)), l1, 1, m2, j, 0, m];
      xx2 = x^m/((x - b1)^m1 (x - b2)^m2);
      ll = Join[ll, Simplify[xx1 - xx2]];
      ];
      ll

      Out[5734]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0


      It would be interesting to derive similar formulae in the case $n > 2$.






      share|cite|improve this answer









      $endgroup$













        Your Answer








        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184487%2fhow-to-quickly-solve-partial-fractions-equation%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        6












        $begingroup$

        Here's your answer
        for general $n$.



        $dfrac1prod_k=1^n (x-a_k)
        =sum_k=1^n dfracb_kx-a_k
        $
        .



        Therefore
        $1
        =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
        =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
        $
        .



        Setting
        $x = a_i$
        for each $i$,
        all the terms
        except the one with $k=i$
        have the factor $a_i-a_i$,
        so
        $1 = b_iprod_j=1, jne i^n (a_i-a_j)
        $

        so that
        $b_i
        =dfrac1prod_j=1, jne i^n (a_i-a_j)
        $
        .



        For $n=2$,
        $b_1
        =dfrac1a_1-a_2
        $
        ,
        $b_2
        =dfrac1a_2-a_1
        $
        .



        For $n=3$,
        $b_1
        =dfrac1(a_1-a_2)(a_1-a_3)
        $
        ,
        $b_2
        =dfrac1(a_2-a_1)(a_2-a_3)
        $
        ,
        $b_3
        =dfrac1(a_3-a_1)(a_3-a_2)
        $
        .






        share|cite|improve this answer









        $endgroup$

















          6












          $begingroup$

          Here's your answer
          for general $n$.



          $dfrac1prod_k=1^n (x-a_k)
          =sum_k=1^n dfracb_kx-a_k
          $
          .



          Therefore
          $1
          =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
          =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
          $
          .



          Setting
          $x = a_i$
          for each $i$,
          all the terms
          except the one with $k=i$
          have the factor $a_i-a_i$,
          so
          $1 = b_iprod_j=1, jne i^n (a_i-a_j)
          $

          so that
          $b_i
          =dfrac1prod_j=1, jne i^n (a_i-a_j)
          $
          .



          For $n=2$,
          $b_1
          =dfrac1a_1-a_2
          $
          ,
          $b_2
          =dfrac1a_2-a_1
          $
          .



          For $n=3$,
          $b_1
          =dfrac1(a_1-a_2)(a_1-a_3)
          $
          ,
          $b_2
          =dfrac1(a_2-a_1)(a_2-a_3)
          $
          ,
          $b_3
          =dfrac1(a_3-a_1)(a_3-a_2)
          $
          .






          share|cite|improve this answer









          $endgroup$















            6












            6








            6





            $begingroup$

            Here's your answer
            for general $n$.



            $dfrac1prod_k=1^n (x-a_k)
            =sum_k=1^n dfracb_kx-a_k
            $
            .



            Therefore
            $1
            =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
            =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
            $
            .



            Setting
            $x = a_i$
            for each $i$,
            all the terms
            except the one with $k=i$
            have the factor $a_i-a_i$,
            so
            $1 = b_iprod_j=1, jne i^n (a_i-a_j)
            $

            so that
            $b_i
            =dfrac1prod_j=1, jne i^n (a_i-a_j)
            $
            .



            For $n=2$,
            $b_1
            =dfrac1a_1-a_2
            $
            ,
            $b_2
            =dfrac1a_2-a_1
            $
            .



            For $n=3$,
            $b_1
            =dfrac1(a_1-a_2)(a_1-a_3)
            $
            ,
            $b_2
            =dfrac1(a_2-a_1)(a_2-a_3)
            $
            ,
            $b_3
            =dfrac1(a_3-a_1)(a_3-a_2)
            $
            .






            share|cite|improve this answer









            $endgroup$



            Here's your answer
            for general $n$.



            $dfrac1prod_k=1^n (x-a_k)
            =sum_k=1^n dfracb_kx-a_k
            $
            .



            Therefore
            $1
            =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
            =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
            $
            .



            Setting
            $x = a_i$
            for each $i$,
            all the terms
            except the one with $k=i$
            have the factor $a_i-a_i$,
            so
            $1 = b_iprod_j=1, jne i^n (a_i-a_j)
            $

            so that
            $b_i
            =dfrac1prod_j=1, jne i^n (a_i-a_j)
            $
            .



            For $n=2$,
            $b_1
            =dfrac1a_1-a_2
            $
            ,
            $b_2
            =dfrac1a_2-a_1
            $
            .



            For $n=3$,
            $b_1
            =dfrac1(a_1-a_2)(a_1-a_3)
            $
            ,
            $b_2
            =dfrac1(a_2-a_1)(a_2-a_3)
            $
            ,
            $b_3
            =dfrac1(a_3-a_1)(a_3-a_2)
            $
            .







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Apr 12 at 4:40









            marty cohenmarty cohen

            75.8k549130




            75.8k549130





















                8












                $begingroup$

                If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



                Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



                For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
                Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
                $$A_2 = frac 1(3-1)(3+4) = frac114$$



                $$A_3=frac 1(-4-1)(-4-3)=frac135$$






                share|cite|improve this answer









                $endgroup$

















                  8












                  $begingroup$

                  If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



                  Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



                  For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
                  Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
                  $$A_2 = frac 1(3-1)(3+4) = frac114$$



                  $$A_3=frac 1(-4-1)(-4-3)=frac135$$






                  share|cite|improve this answer









                  $endgroup$















                    8












                    8








                    8





                    $begingroup$

                    If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



                    Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



                    For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
                    Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
                    $$A_2 = frac 1(3-1)(3+4) = frac114$$



                    $$A_3=frac 1(-4-1)(-4-3)=frac135$$






                    share|cite|improve this answer









                    $endgroup$



                    If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



                    Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



                    For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
                    Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
                    $$A_2 = frac 1(3-1)(3+4) = frac114$$



                    $$A_3=frac 1(-4-1)(-4-3)=frac135$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Apr 12 at 2:09









                    Mohammad Riazi-KermaniMohammad Riazi-Kermani

                    42.2k42061




                    42.2k42061





















                        6












                        $begingroup$

                        Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



                        $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



                        $$1 = A(t + beta) + B(t + alpha)$$



                        Evaluating $-beta$ for $t$:



                        $$1 = B(alpha - beta)$$



                        $$B = frac1alpha - beta$$



                        Similarly, for $A$, sub in $-alpha$:



                        $$1 = A(beta - alpha)$$



                        $$A = frac1beta - alpha$$






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          I'll be coming back to this post. This is what I was looking for.
                          $endgroup$
                          – weno
                          Apr 12 at 1:45










                        • $begingroup$
                          Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
                          $endgroup$
                          – weno
                          Apr 12 at 1:47
















                        6












                        $begingroup$

                        Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



                        $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



                        $$1 = A(t + beta) + B(t + alpha)$$



                        Evaluating $-beta$ for $t$:



                        $$1 = B(alpha - beta)$$



                        $$B = frac1alpha - beta$$



                        Similarly, for $A$, sub in $-alpha$:



                        $$1 = A(beta - alpha)$$



                        $$A = frac1beta - alpha$$






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          I'll be coming back to this post. This is what I was looking for.
                          $endgroup$
                          – weno
                          Apr 12 at 1:45










                        • $begingroup$
                          Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
                          $endgroup$
                          – weno
                          Apr 12 at 1:47














                        6












                        6








                        6





                        $begingroup$

                        Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



                        $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



                        $$1 = A(t + beta) + B(t + alpha)$$



                        Evaluating $-beta$ for $t$:



                        $$1 = B(alpha - beta)$$



                        $$B = frac1alpha - beta$$



                        Similarly, for $A$, sub in $-alpha$:



                        $$1 = A(beta - alpha)$$



                        $$A = frac1beta - alpha$$






                        share|cite|improve this answer











                        $endgroup$



                        Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



                        $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



                        $$1 = A(t + beta) + B(t + alpha)$$



                        Evaluating $-beta$ for $t$:



                        $$1 = B(alpha - beta)$$



                        $$B = frac1alpha - beta$$



                        Similarly, for $A$, sub in $-alpha$:



                        $$1 = A(beta - alpha)$$



                        $$A = frac1beta - alpha$$







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Apr 12 at 6:15









                        MichaelChirico

                        3,5381126




                        3,5381126










                        answered Apr 12 at 1:37









                        DairDair

                        2,00011124




                        2,00011124











                        • $begingroup$
                          I'll be coming back to this post. This is what I was looking for.
                          $endgroup$
                          – weno
                          Apr 12 at 1:45










                        • $begingroup$
                          Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
                          $endgroup$
                          – weno
                          Apr 12 at 1:47

















                        • $begingroup$
                          I'll be coming back to this post. This is what I was looking for.
                          $endgroup$
                          – weno
                          Apr 12 at 1:45










                        • $begingroup$
                          Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
                          $endgroup$
                          – weno
                          Apr 12 at 1:47
















                        $begingroup$
                        I'll be coming back to this post. This is what I was looking for.
                        $endgroup$
                        – weno
                        Apr 12 at 1:45




                        $begingroup$
                        I'll be coming back to this post. This is what I was looking for.
                        $endgroup$
                        – weno
                        Apr 12 at 1:45












                        $begingroup$
                        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
                        $endgroup$
                        – weno
                        Apr 12 at 1:47





                        $begingroup$
                        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
                        $endgroup$
                        – weno
                        Apr 12 at 1:47












                        1












                        $begingroup$

                        Let $n$,$m$ be integers such that $nge 2$ and $n-1 ge m ge 0$ .Then if the roots of the polynomial in question are all distinct the following formula holds:
                        beginequation
                        fracx^mprodlimits_j=1^n (x-b_j) = sumlimits_i=1^n frac1x-b_i cdot fracb_i^mprodlimits_j=1,jneq i^n (b_i-b_j)
                        endequation

                        Now, if the roots are not distinct then it gets more complicated but even at the outset it is clear that we can generate a similar formula by differentiating both sides with respect to the particular root a certain number of times. For example if $n=2$ and $m_1 ge 1$, $m_2 ge 1$ and $mge 0$ the following formula holds true:
                        begineqnarray
                        fracx^m(x-b_1)^m_1 (x-b_2)^m_2=sumlimits_j=0^m left( sumlimits_l_1=1^m_1 binomm_1+m_2-1-l_1m_2-1(-1)^m_2 b_1^j frac1_l_1=1 binomm-1j-1 + 1_l_1>1 binommj(x-b_1)^l_1-m+j (-b_1+b_2)^m_1+m_2-l_1+
                        sumlimits_l_1=1^m_2 binomm_1+m_2-1-l_1m_1-1(-1)^m_1 b_2^j
                        frac1_l_1=1 binomm-1j-1 + 1_l_1>1 binommj(x-b_2)^l_1-m+j (-b_2+b_1)^m_1+m_2-l_1
                        right)
                        endeqnarray



                        In[5732]:= ll = ; x =.; b1 =.; b2 =.; m = RandomInteger[0, 10];
                        For[count = 1, count <= 100, count++,
                        m1, m2 = RandomInteger[1, 5, 2]; x =.; b1 =.; b2 =.;
                        xx1 =
                        Sum[
                        Binomial[m1 + m2 - 1 - l1, m2 - 1] ((-1)^
                        m2 b1^j If[l1 == 1, Binomial[m - 1, j - 1],
                        Binomial[m, j]])/((x - b1)^(l1 - m + j) (-b1 + b2)^(
                        m1 + m2 - l1)), l1, 1, m1, j, 0, m] +
                        Sum[ Binomial[m1 + m2 - 1 - l1, m1 - 1] ((-1)^
                        m1 b2^j If[l1 == 1, Binomial[m - 1, j - 1],
                        Binomial[m, j]])/((x - b2)^(l1 - m + j) (-b2 + b1)^(
                        m1 + m2 - l1)), l1, 1, m2, j, 0, m];
                        xx2 = x^m/((x - b1)^m1 (x - b2)^m2);
                        ll = Join[ll, Simplify[xx1 - xx2]];
                        ];
                        ll

                        Out[5734]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0


                        It would be interesting to derive similar formulae in the case $n > 2$.






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          Let $n$,$m$ be integers such that $nge 2$ and $n-1 ge m ge 0$ .Then if the roots of the polynomial in question are all distinct the following formula holds:
                          beginequation
                          fracx^mprodlimits_j=1^n (x-b_j) = sumlimits_i=1^n frac1x-b_i cdot fracb_i^mprodlimits_j=1,jneq i^n (b_i-b_j)
                          endequation

                          Now, if the roots are not distinct then it gets more complicated but even at the outset it is clear that we can generate a similar formula by differentiating both sides with respect to the particular root a certain number of times. For example if $n=2$ and $m_1 ge 1$, $m_2 ge 1$ and $mge 0$ the following formula holds true:
                          begineqnarray
                          fracx^m(x-b_1)^m_1 (x-b_2)^m_2=sumlimits_j=0^m left( sumlimits_l_1=1^m_1 binomm_1+m_2-1-l_1m_2-1(-1)^m_2 b_1^j frac1_l_1=1 binomm-1j-1 + 1_l_1>1 binommj(x-b_1)^l_1-m+j (-b_1+b_2)^m_1+m_2-l_1+
                          sumlimits_l_1=1^m_2 binomm_1+m_2-1-l_1m_1-1(-1)^m_1 b_2^j
                          frac1_l_1=1 binomm-1j-1 + 1_l_1>1 binommj(x-b_2)^l_1-m+j (-b_2+b_1)^m_1+m_2-l_1
                          right)
                          endeqnarray



                          In[5732]:= ll = ; x =.; b1 =.; b2 =.; m = RandomInteger[0, 10];
                          For[count = 1, count <= 100, count++,
                          m1, m2 = RandomInteger[1, 5, 2]; x =.; b1 =.; b2 =.;
                          xx1 =
                          Sum[
                          Binomial[m1 + m2 - 1 - l1, m2 - 1] ((-1)^
                          m2 b1^j If[l1 == 1, Binomial[m - 1, j - 1],
                          Binomial[m, j]])/((x - b1)^(l1 - m + j) (-b1 + b2)^(
                          m1 + m2 - l1)), l1, 1, m1, j, 0, m] +
                          Sum[ Binomial[m1 + m2 - 1 - l1, m1 - 1] ((-1)^
                          m1 b2^j If[l1 == 1, Binomial[m - 1, j - 1],
                          Binomial[m, j]])/((x - b2)^(l1 - m + j) (-b2 + b1)^(
                          m1 + m2 - l1)), l1, 1, m2, j, 0, m];
                          xx2 = x^m/((x - b1)^m1 (x - b2)^m2);
                          ll = Join[ll, Simplify[xx1 - xx2]];
                          ];
                          ll

                          Out[5734]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0


                          It would be interesting to derive similar formulae in the case $n > 2$.






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            Let $n$,$m$ be integers such that $nge 2$ and $n-1 ge m ge 0$ .Then if the roots of the polynomial in question are all distinct the following formula holds:
                            beginequation
                            fracx^mprodlimits_j=1^n (x-b_j) = sumlimits_i=1^n frac1x-b_i cdot fracb_i^mprodlimits_j=1,jneq i^n (b_i-b_j)
                            endequation

                            Now, if the roots are not distinct then it gets more complicated but even at the outset it is clear that we can generate a similar formula by differentiating both sides with respect to the particular root a certain number of times. For example if $n=2$ and $m_1 ge 1$, $m_2 ge 1$ and $mge 0$ the following formula holds true:
                            begineqnarray
                            fracx^m(x-b_1)^m_1 (x-b_2)^m_2=sumlimits_j=0^m left( sumlimits_l_1=1^m_1 binomm_1+m_2-1-l_1m_2-1(-1)^m_2 b_1^j frac1_l_1=1 binomm-1j-1 + 1_l_1>1 binommj(x-b_1)^l_1-m+j (-b_1+b_2)^m_1+m_2-l_1+
                            sumlimits_l_1=1^m_2 binomm_1+m_2-1-l_1m_1-1(-1)^m_1 b_2^j
                            frac1_l_1=1 binomm-1j-1 + 1_l_1>1 binommj(x-b_2)^l_1-m+j (-b_2+b_1)^m_1+m_2-l_1
                            right)
                            endeqnarray



                            In[5732]:= ll = ; x =.; b1 =.; b2 =.; m = RandomInteger[0, 10];
                            For[count = 1, count <= 100, count++,
                            m1, m2 = RandomInteger[1, 5, 2]; x =.; b1 =.; b2 =.;
                            xx1 =
                            Sum[
                            Binomial[m1 + m2 - 1 - l1, m2 - 1] ((-1)^
                            m2 b1^j If[l1 == 1, Binomial[m - 1, j - 1],
                            Binomial[m, j]])/((x - b1)^(l1 - m + j) (-b1 + b2)^(
                            m1 + m2 - l1)), l1, 1, m1, j, 0, m] +
                            Sum[ Binomial[m1 + m2 - 1 - l1, m1 - 1] ((-1)^
                            m1 b2^j If[l1 == 1, Binomial[m - 1, j - 1],
                            Binomial[m, j]])/((x - b2)^(l1 - m + j) (-b2 + b1)^(
                            m1 + m2 - l1)), l1, 1, m2, j, 0, m];
                            xx2 = x^m/((x - b1)^m1 (x - b2)^m2);
                            ll = Join[ll, Simplify[xx1 - xx2]];
                            ];
                            ll

                            Out[5734]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0


                            It would be interesting to derive similar formulae in the case $n > 2$.






                            share|cite|improve this answer









                            $endgroup$



                            Let $n$,$m$ be integers such that $nge 2$ and $n-1 ge m ge 0$ .Then if the roots of the polynomial in question are all distinct the following formula holds:
                            beginequation
                            fracx^mprodlimits_j=1^n (x-b_j) = sumlimits_i=1^n frac1x-b_i cdot fracb_i^mprodlimits_j=1,jneq i^n (b_i-b_j)
                            endequation

                            Now, if the roots are not distinct then it gets more complicated but even at the outset it is clear that we can generate a similar formula by differentiating both sides with respect to the particular root a certain number of times. For example if $n=2$ and $m_1 ge 1$, $m_2 ge 1$ and $mge 0$ the following formula holds true:
                            begineqnarray
                            fracx^m(x-b_1)^m_1 (x-b_2)^m_2=sumlimits_j=0^m left( sumlimits_l_1=1^m_1 binomm_1+m_2-1-l_1m_2-1(-1)^m_2 b_1^j frac1_l_1=1 binomm-1j-1 + 1_l_1>1 binommj(x-b_1)^l_1-m+j (-b_1+b_2)^m_1+m_2-l_1+
                            sumlimits_l_1=1^m_2 binomm_1+m_2-1-l_1m_1-1(-1)^m_1 b_2^j
                            frac1_l_1=1 binomm-1j-1 + 1_l_1>1 binommj(x-b_2)^l_1-m+j (-b_2+b_1)^m_1+m_2-l_1
                            right)
                            endeqnarray



                            In[5732]:= ll = ; x =.; b1 =.; b2 =.; m = RandomInteger[0, 10];
                            For[count = 1, count <= 100, count++,
                            m1, m2 = RandomInteger[1, 5, 2]; x =.; b1 =.; b2 =.;
                            xx1 =
                            Sum[
                            Binomial[m1 + m2 - 1 - l1, m2 - 1] ((-1)^
                            m2 b1^j If[l1 == 1, Binomial[m - 1, j - 1],
                            Binomial[m, j]])/((x - b1)^(l1 - m + j) (-b1 + b2)^(
                            m1 + m2 - l1)), l1, 1, m1, j, 0, m] +
                            Sum[ Binomial[m1 + m2 - 1 - l1, m1 - 1] ((-1)^
                            m1 b2^j If[l1 == 1, Binomial[m - 1, j - 1],
                            Binomial[m, j]])/((x - b2)^(l1 - m + j) (-b2 + b1)^(
                            m1 + m2 - l1)), l1, 1, m2, j, 0, m];
                            xx2 = x^m/((x - b1)^m1 (x - b2)^m2);
                            ll = Join[ll, Simplify[xx1 - xx2]];
                            ];
                            ll

                            Out[5734]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0


                            It would be interesting to derive similar formulae in the case $n > 2$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Apr 12 at 10:22









                            PrzemoPrzemo

                            4,71811032




                            4,71811032



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184487%2fhow-to-quickly-solve-partial-fractions-equation%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                                Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                                Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020