Efficient computation of conjugacy classes of a small group.Character Table From PresentationComputing Conjugacy Classes of Subgroups in GAPconjugacy class of a dicyclic groupConjugacy Classes and Character Degrees of E8(2)Character Table Dihedral group of $D_6$Character table for $G:= langle x,y mid x^5=y^4=1text and yx=x^2yrangle$Size of Conjugacy Classes group of order 168Rational Classes (Conjugacy Classes)Find conjugacy classes of $S_3$Character Table from Generators of a Group

Which is the better way to call a method that is only available to one class that implements an interface but not the other one?

How to make insert mode mapping count as multiple undos?

Is it expected that a reader will skip parts of what you write?

Ability To Change Root User Password (Vulnerability?)

Is there a DSLR/mirorless camera with minimal options like a classic, simple SLR?

A map of non-pathological topology?

Longest bridge/tunnel that can be cycled over/through?

How can I make 12 tone and atonal melodies sound interesting?

What differences exist between adamantine and adamantite in all editions of D&D?

USGS Relief map (GeoTIFF raster) misaligns with vector layers (QGIS)

bash does not know the letter 'p'

How can I use String in enum for Apex?

Are inverted question and exclamation mark supposed to be symmetrical to the "normal" counter-parts?

Live action TV show where High school Kids go into the virtual world and have to clear levels

How to “listen” to existing circuit

Can I utilise a baking stone to make crepes?

Is there a set of positive integers of density 1 which contains no infinite arithmetic progression?

Is it possible to have 2 different but equal size real number sets that have the same mean and standard deviation?

Write a function that checks if a string starts with something

Proving that a Russian cryptographic standard is too structured

How to publish items after pipeline is finished?

Return a String containing only alphabets without spaces

What is the color of artificial intelligence?

I've been given a project I can't complete, what should I do?



Efficient computation of conjugacy classes of a small group.


Character Table From PresentationComputing Conjugacy Classes of Subgroups in GAPconjugacy class of a dicyclic groupConjugacy Classes and Character Degrees of E8(2)Character Table Dihedral group of $D_6$Character table for $G:= langle x,y mid x^5=y^4=1text and yx=x^2yrangle$Size of Conjugacy Classes group of order 168Rational Classes (Conjugacy Classes)Find conjugacy classes of $S_3$Character Table from Generators of a Group













5












$begingroup$


I'm trying to construct a character table for a group of order 54 given by:



$$ langle a,b : a^9 = b^6 = 1, b^-1 a b = a^2rangle $$



To do this first I need to compute conjugacy classes. This feels like a tedious task and I'm looking for some guidance on how to compute those efficiently.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    There's always GAP.
    $endgroup$
    – Shaun
    May 24 at 13:13















5












$begingroup$


I'm trying to construct a character table for a group of order 54 given by:



$$ langle a,b : a^9 = b^6 = 1, b^-1 a b = a^2rangle $$



To do this first I need to compute conjugacy classes. This feels like a tedious task and I'm looking for some guidance on how to compute those efficiently.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    There's always GAP.
    $endgroup$
    – Shaun
    May 24 at 13:13













5












5








5


1



$begingroup$


I'm trying to construct a character table for a group of order 54 given by:



$$ langle a,b : a^9 = b^6 = 1, b^-1 a b = a^2rangle $$



To do this first I need to compute conjugacy classes. This feels like a tedious task and I'm looking for some guidance on how to compute those efficiently.










share|cite|improve this question











$endgroup$




I'm trying to construct a character table for a group of order 54 given by:



$$ langle a,b : a^9 = b^6 = 1, b^-1 a b = a^2rangle $$



To do this first I need to compute conjugacy classes. This feels like a tedious task and I'm looking for some guidance on how to compute those efficiently.







group-theory group-presentation combinatorial-group-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 24 at 13:12









Shaun

11.3k123688




11.3k123688










asked May 24 at 10:34









RadostRadost

1,30416




1,30416







  • 1




    $begingroup$
    There's always GAP.
    $endgroup$
    – Shaun
    May 24 at 13:13












  • 1




    $begingroup$
    There's always GAP.
    $endgroup$
    – Shaun
    May 24 at 13:13







1




1




$begingroup$
There's always GAP.
$endgroup$
– Shaun
May 24 at 13:13




$begingroup$
There's always GAP.
$endgroup$
– Shaun
May 24 at 13:13










2 Answers
2






active

oldest

votes


















5












$begingroup$

$G = a^mb^n:0le mle 8,0le nle 5$. For an element $a^mb^nin G$, $b^-1a^mb^nb = a^2mb^n$ and thus for a fixed $n$, $a^mb^n$ (with $m = 1,2,4,5,7,8$ or with $m = 3,6$) are in a same conjugacy class. Moreover, $$a^-1a^mb^na = a^m-1b^nab^-nb^n = a^m-1a^5^nb^n$$since $ba^2b^-1 = a = (a^2)^5$ and $a^2$ is also a generator of $langle arangle$. Note that a conjugate by $a$ or $b$ does not change $n$. Therefore, we only need to discuss $n$.



(1) $n=0$, then $a^-1a^mb^na = a^mb^n$, so the conjugate by $a$ is fixed. So $1,a,a^2,a^4,a^5,a^7,a^8,a^3,a^6$ are conjugacy classes.



(2) $n=1$, then $a^-1a^mb^na = a^m+4b^n$. So $b,ab,dots, a^8b$ is a conjugacy class, since $m+4$ runs all the $m$'s.



(3) $n=2$, then $a^-1a^mb^na = a^m+24b^n = a^m+6b^n$. Now $a^3b^2$, $a^6b^2$ and $b^2$ are in the same conjugacy class, while other $m$ forms another conjugacy class.



(4) $n=3$, then $a^-1a^mb^na = a^m+124b^n = a^m+7b^n$. The same as (2) since it runs all the $m$'s.



(5) $n=4$, then $a^-1a^mb^na = a^m+3b^n $. The same as (3).



(6) $n=5$, then $a^-1a^mb^na = a^m+1b^n$. The same as (2).






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Maybe there are some mistakes in calculation, but the key is that the conjugate does not change $n$.
    $endgroup$
    – Hongyi Huang
    May 24 at 11:14


















5












$begingroup$

From the defining relations try to get a description of all the elements.



Any element is a "word" involving $a$ and $b$.



Last condition $b^-1ab = a^2$ can be rewritten as $ab= ba^2$. This modified version says whenever a comes ahead of b it can be pushed to come behind b, but as $a^2$. So all words in a and b can be reformulated to have b's in the front and a's at end. As $a^9=b^6=1$, any element can be written as $b^m a^n$ with $m=0,1,2,ldots, 8, n=0,1,2,ldots, 5$, giving 54 possibilities.



Now try to describe conjuates of elements of type $a^k$, then $b^k$ and then $a^k b^l$ by any $g$ ($g$ has to be of the form $b^m a^n$ as above). It is doable.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3238057%2fefficient-computation-of-conjugacy-classes-of-a-small-group%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    $G = a^mb^n:0le mle 8,0le nle 5$. For an element $a^mb^nin G$, $b^-1a^mb^nb = a^2mb^n$ and thus for a fixed $n$, $a^mb^n$ (with $m = 1,2,4,5,7,8$ or with $m = 3,6$) are in a same conjugacy class. Moreover, $$a^-1a^mb^na = a^m-1b^nab^-nb^n = a^m-1a^5^nb^n$$since $ba^2b^-1 = a = (a^2)^5$ and $a^2$ is also a generator of $langle arangle$. Note that a conjugate by $a$ or $b$ does not change $n$. Therefore, we only need to discuss $n$.



    (1) $n=0$, then $a^-1a^mb^na = a^mb^n$, so the conjugate by $a$ is fixed. So $1,a,a^2,a^4,a^5,a^7,a^8,a^3,a^6$ are conjugacy classes.



    (2) $n=1$, then $a^-1a^mb^na = a^m+4b^n$. So $b,ab,dots, a^8b$ is a conjugacy class, since $m+4$ runs all the $m$'s.



    (3) $n=2$, then $a^-1a^mb^na = a^m+24b^n = a^m+6b^n$. Now $a^3b^2$, $a^6b^2$ and $b^2$ are in the same conjugacy class, while other $m$ forms another conjugacy class.



    (4) $n=3$, then $a^-1a^mb^na = a^m+124b^n = a^m+7b^n$. The same as (2) since it runs all the $m$'s.



    (5) $n=4$, then $a^-1a^mb^na = a^m+3b^n $. The same as (3).



    (6) $n=5$, then $a^-1a^mb^na = a^m+1b^n$. The same as (2).






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Maybe there are some mistakes in calculation, but the key is that the conjugate does not change $n$.
      $endgroup$
      – Hongyi Huang
      May 24 at 11:14















    5












    $begingroup$

    $G = a^mb^n:0le mle 8,0le nle 5$. For an element $a^mb^nin G$, $b^-1a^mb^nb = a^2mb^n$ and thus for a fixed $n$, $a^mb^n$ (with $m = 1,2,4,5,7,8$ or with $m = 3,6$) are in a same conjugacy class. Moreover, $$a^-1a^mb^na = a^m-1b^nab^-nb^n = a^m-1a^5^nb^n$$since $ba^2b^-1 = a = (a^2)^5$ and $a^2$ is also a generator of $langle arangle$. Note that a conjugate by $a$ or $b$ does not change $n$. Therefore, we only need to discuss $n$.



    (1) $n=0$, then $a^-1a^mb^na = a^mb^n$, so the conjugate by $a$ is fixed. So $1,a,a^2,a^4,a^5,a^7,a^8,a^3,a^6$ are conjugacy classes.



    (2) $n=1$, then $a^-1a^mb^na = a^m+4b^n$. So $b,ab,dots, a^8b$ is a conjugacy class, since $m+4$ runs all the $m$'s.



    (3) $n=2$, then $a^-1a^mb^na = a^m+24b^n = a^m+6b^n$. Now $a^3b^2$, $a^6b^2$ and $b^2$ are in the same conjugacy class, while other $m$ forms another conjugacy class.



    (4) $n=3$, then $a^-1a^mb^na = a^m+124b^n = a^m+7b^n$. The same as (2) since it runs all the $m$'s.



    (5) $n=4$, then $a^-1a^mb^na = a^m+3b^n $. The same as (3).



    (6) $n=5$, then $a^-1a^mb^na = a^m+1b^n$. The same as (2).






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Maybe there are some mistakes in calculation, but the key is that the conjugate does not change $n$.
      $endgroup$
      – Hongyi Huang
      May 24 at 11:14













    5












    5








    5





    $begingroup$

    $G = a^mb^n:0le mle 8,0le nle 5$. For an element $a^mb^nin G$, $b^-1a^mb^nb = a^2mb^n$ and thus for a fixed $n$, $a^mb^n$ (with $m = 1,2,4,5,7,8$ or with $m = 3,6$) are in a same conjugacy class. Moreover, $$a^-1a^mb^na = a^m-1b^nab^-nb^n = a^m-1a^5^nb^n$$since $ba^2b^-1 = a = (a^2)^5$ and $a^2$ is also a generator of $langle arangle$. Note that a conjugate by $a$ or $b$ does not change $n$. Therefore, we only need to discuss $n$.



    (1) $n=0$, then $a^-1a^mb^na = a^mb^n$, so the conjugate by $a$ is fixed. So $1,a,a^2,a^4,a^5,a^7,a^8,a^3,a^6$ are conjugacy classes.



    (2) $n=1$, then $a^-1a^mb^na = a^m+4b^n$. So $b,ab,dots, a^8b$ is a conjugacy class, since $m+4$ runs all the $m$'s.



    (3) $n=2$, then $a^-1a^mb^na = a^m+24b^n = a^m+6b^n$. Now $a^3b^2$, $a^6b^2$ and $b^2$ are in the same conjugacy class, while other $m$ forms another conjugacy class.



    (4) $n=3$, then $a^-1a^mb^na = a^m+124b^n = a^m+7b^n$. The same as (2) since it runs all the $m$'s.



    (5) $n=4$, then $a^-1a^mb^na = a^m+3b^n $. The same as (3).



    (6) $n=5$, then $a^-1a^mb^na = a^m+1b^n$. The same as (2).






    share|cite|improve this answer









    $endgroup$



    $G = a^mb^n:0le mle 8,0le nle 5$. For an element $a^mb^nin G$, $b^-1a^mb^nb = a^2mb^n$ and thus for a fixed $n$, $a^mb^n$ (with $m = 1,2,4,5,7,8$ or with $m = 3,6$) are in a same conjugacy class. Moreover, $$a^-1a^mb^na = a^m-1b^nab^-nb^n = a^m-1a^5^nb^n$$since $ba^2b^-1 = a = (a^2)^5$ and $a^2$ is also a generator of $langle arangle$. Note that a conjugate by $a$ or $b$ does not change $n$. Therefore, we only need to discuss $n$.



    (1) $n=0$, then $a^-1a^mb^na = a^mb^n$, so the conjugate by $a$ is fixed. So $1,a,a^2,a^4,a^5,a^7,a^8,a^3,a^6$ are conjugacy classes.



    (2) $n=1$, then $a^-1a^mb^na = a^m+4b^n$. So $b,ab,dots, a^8b$ is a conjugacy class, since $m+4$ runs all the $m$'s.



    (3) $n=2$, then $a^-1a^mb^na = a^m+24b^n = a^m+6b^n$. Now $a^3b^2$, $a^6b^2$ and $b^2$ are in the same conjugacy class, while other $m$ forms another conjugacy class.



    (4) $n=3$, then $a^-1a^mb^na = a^m+124b^n = a^m+7b^n$. The same as (2) since it runs all the $m$'s.



    (5) $n=4$, then $a^-1a^mb^na = a^m+3b^n $. The same as (3).



    (6) $n=5$, then $a^-1a^mb^na = a^m+1b^n$. The same as (2).







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered May 24 at 11:09









    Hongyi HuangHongyi Huang

    1,814116




    1,814116











    • $begingroup$
      Maybe there are some mistakes in calculation, but the key is that the conjugate does not change $n$.
      $endgroup$
      – Hongyi Huang
      May 24 at 11:14
















    • $begingroup$
      Maybe there are some mistakes in calculation, but the key is that the conjugate does not change $n$.
      $endgroup$
      – Hongyi Huang
      May 24 at 11:14















    $begingroup$
    Maybe there are some mistakes in calculation, but the key is that the conjugate does not change $n$.
    $endgroup$
    – Hongyi Huang
    May 24 at 11:14




    $begingroup$
    Maybe there are some mistakes in calculation, but the key is that the conjugate does not change $n$.
    $endgroup$
    – Hongyi Huang
    May 24 at 11:14











    5












    $begingroup$

    From the defining relations try to get a description of all the elements.



    Any element is a "word" involving $a$ and $b$.



    Last condition $b^-1ab = a^2$ can be rewritten as $ab= ba^2$. This modified version says whenever a comes ahead of b it can be pushed to come behind b, but as $a^2$. So all words in a and b can be reformulated to have b's in the front and a's at end. As $a^9=b^6=1$, any element can be written as $b^m a^n$ with $m=0,1,2,ldots, 8, n=0,1,2,ldots, 5$, giving 54 possibilities.



    Now try to describe conjuates of elements of type $a^k$, then $b^k$ and then $a^k b^l$ by any $g$ ($g$ has to be of the form $b^m a^n$ as above). It is doable.






    share|cite|improve this answer









    $endgroup$

















      5












      $begingroup$

      From the defining relations try to get a description of all the elements.



      Any element is a "word" involving $a$ and $b$.



      Last condition $b^-1ab = a^2$ can be rewritten as $ab= ba^2$. This modified version says whenever a comes ahead of b it can be pushed to come behind b, but as $a^2$. So all words in a and b can be reformulated to have b's in the front and a's at end. As $a^9=b^6=1$, any element can be written as $b^m a^n$ with $m=0,1,2,ldots, 8, n=0,1,2,ldots, 5$, giving 54 possibilities.



      Now try to describe conjuates of elements of type $a^k$, then $b^k$ and then $a^k b^l$ by any $g$ ($g$ has to be of the form $b^m a^n$ as above). It is doable.






      share|cite|improve this answer









      $endgroup$















        5












        5








        5





        $begingroup$

        From the defining relations try to get a description of all the elements.



        Any element is a "word" involving $a$ and $b$.



        Last condition $b^-1ab = a^2$ can be rewritten as $ab= ba^2$. This modified version says whenever a comes ahead of b it can be pushed to come behind b, but as $a^2$. So all words in a and b can be reformulated to have b's in the front and a's at end. As $a^9=b^6=1$, any element can be written as $b^m a^n$ with $m=0,1,2,ldots, 8, n=0,1,2,ldots, 5$, giving 54 possibilities.



        Now try to describe conjuates of elements of type $a^k$, then $b^k$ and then $a^k b^l$ by any $g$ ($g$ has to be of the form $b^m a^n$ as above). It is doable.






        share|cite|improve this answer









        $endgroup$



        From the defining relations try to get a description of all the elements.



        Any element is a "word" involving $a$ and $b$.



        Last condition $b^-1ab = a^2$ can be rewritten as $ab= ba^2$. This modified version says whenever a comes ahead of b it can be pushed to come behind b, but as $a^2$. So all words in a and b can be reformulated to have b's in the front and a's at end. As $a^9=b^6=1$, any element can be written as $b^m a^n$ with $m=0,1,2,ldots, 8, n=0,1,2,ldots, 5$, giving 54 possibilities.



        Now try to describe conjuates of elements of type $a^k$, then $b^k$ and then $a^k b^l$ by any $g$ ($g$ has to be of the form $b^m a^n$ as above). It is doable.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered May 24 at 11:06









        P VanchinathanP Vanchinathan

        16k12237




        16k12237



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3238057%2fefficient-computation-of-conjugacy-classes-of-a-small-group%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020