Origin of Hecke operatorsDefinition of Hecke operatorsDefinition of Hecke operators on orthogonal modular formsDeligne-Scholl's motives for modular forms: Hecke operators vs. transposed Hecke operatorsRiemann hypothesis for the Hecke operators and modular formsWhat is the matter with Hecke operators?Volumes of Hecke operatorsOrigin of definitions of ramified Hecke operatorsHecke operators for hermitian modular forms of general levelHecke algebra $mathcal H(operatornameGL_2(mathbb Q_p)/operatornameGL_2(mathbb Z_p))$ and Hecke operatorsHecke operators that lower level
Origin of Hecke operators
Definition of Hecke operatorsDefinition of Hecke operators on orthogonal modular formsDeligne-Scholl's motives for modular forms: Hecke operators vs. transposed Hecke operatorsRiemann hypothesis for the Hecke operators and modular formsWhat is the matter with Hecke operators?Volumes of Hecke operatorsOrigin of definitions of ramified Hecke operatorsHecke operators for hermitian modular forms of general levelHecke algebra $mathcal H(operatornameGL_2(mathbb Q_p)/operatornameGL_2(mathbb Z_p))$ and Hecke operatorsHecke operators that lower level
$begingroup$
What is the original paper in which Erich Hecke had first introduced the Hecke operators?
nt.number-theory reference-request modular-forms hecke-operators
$endgroup$
add a comment |
$begingroup$
What is the original paper in which Erich Hecke had first introduced the Hecke operators?
nt.number-theory reference-request modular-forms hecke-operators
$endgroup$
2
$begingroup$
To be fair, Mordell had used "Hecke operators" in proving the weak multiplicativity of Ramanujan's tau-function, that is, of the Fourier coefficients of the holomorphic cuspform of weight 12.
$endgroup$
– paul garrett
Jun 3 at 17:46
add a comment |
$begingroup$
What is the original paper in which Erich Hecke had first introduced the Hecke operators?
nt.number-theory reference-request modular-forms hecke-operators
$endgroup$
What is the original paper in which Erich Hecke had first introduced the Hecke operators?
nt.number-theory reference-request modular-forms hecke-operators
nt.number-theory reference-request modular-forms hecke-operators
asked Jun 2 at 22:56
ShimrodShimrod
600516
600516
2
$begingroup$
To be fair, Mordell had used "Hecke operators" in proving the weak multiplicativity of Ramanujan's tau-function, that is, of the Fourier coefficients of the holomorphic cuspform of weight 12.
$endgroup$
– paul garrett
Jun 3 at 17:46
add a comment |
2
$begingroup$
To be fair, Mordell had used "Hecke operators" in proving the weak multiplicativity of Ramanujan's tau-function, that is, of the Fourier coefficients of the holomorphic cuspform of weight 12.
$endgroup$
– paul garrett
Jun 3 at 17:46
2
2
$begingroup$
To be fair, Mordell had used "Hecke operators" in proving the weak multiplicativity of Ramanujan's tau-function, that is, of the Fourier coefficients of the holomorphic cuspform of weight 12.
$endgroup$
– paul garrett
Jun 3 at 17:46
$begingroup$
To be fair, Mordell had used "Hecke operators" in proving the weak multiplicativity of Ramanujan's tau-function, that is, of the Fourier coefficients of the holomorphic cuspform of weight 12.
$endgroup$
– paul garrett
Jun 3 at 17:46
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, Math. Ann. 114 (1937), 1-28; II, ibid., 316-351. These two papers are available here and here.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f333116%2forigin-of-hecke-operators%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, Math. Ann. 114 (1937), 1-28; II, ibid., 316-351. These two papers are available here and here.
$endgroup$
add a comment |
$begingroup$
Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, Math. Ann. 114 (1937), 1-28; II, ibid., 316-351. These two papers are available here and here.
$endgroup$
add a comment |
$begingroup$
Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, Math. Ann. 114 (1937), 1-28; II, ibid., 316-351. These two papers are available here and here.
$endgroup$
Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, Math. Ann. 114 (1937), 1-28; II, ibid., 316-351. These two papers are available here and here.
answered Jun 2 at 23:50
GH from MOGH from MO
61.1k5154234
61.1k5154234
add a comment |
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f333116%2forigin-of-hecke-operators%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
To be fair, Mordell had used "Hecke operators" in proving the weak multiplicativity of Ramanujan's tau-function, that is, of the Fourier coefficients of the holomorphic cuspform of weight 12.
$endgroup$
– paul garrett
Jun 3 at 17:46