Do Fourier frequencies actually exist in real life in form of “fundamental frequency”?Instantaneous frequency vs fourier frequencyOn using eigenvectors to estimate a signals' fundamental frequency, via MUSICFractional Frequency and negative FrequenciesSeparating waves of very close wavelengthsunderstanding windowed fourier ridgesRelationship between filters, Fourier magnitude, and frequencyHPS Algorithm for detecting the fundamental frequency of a guitar stringAlgorithms for finding fundamental frequency based on ACF resultHow to scale fundamental frequency to [0,1]?Pitch perception - Why does our ear not directly detect the missing fundamental frequency?Can the instantaneous frequency be always derived from an analytic signal?

How exactly does Hawking radiation decrease the mass of black holes?

Is it acceptable to use working hours to read general interest books?

Why did Rep. Omar conclude her criticism of US troops with the phrase "NotTodaySatan"?

Why did C use the -> operator instead of reusing the . operator?

Partitioning values in a sequence

Can a Bard use the Spell Glyph option of the Glyph of Warding spell and cast a known spell into the glyph?

What is purpose of DB Browser(dbbrowser.aspx) under admin tool?

Creating a chemical industry from a medieval tech level without petroleum

How much of a wave function must reside inside event horizon for it to be consumed by the black hole?

Injection into a proper class and choice without regularity

Can a level 2 Warlock take one level in rogue, then continue advancing as a warlock?

Will I lose my paid in full property

How to have a sharp product image?

Older movie/show about humans on derelict alien warship which refuels by passing through a star

Is Diceware more secure than a long passphrase?

Rudin 2.10 (b) Example

"My boss was furious with me and I have been fired" vs. "My boss was furious with me and I was fired"

What does a straight horizontal line above a few notes, after a changed tempo mean?

What is the unit of time_lock_delta in LND?

Retract an already submitted recommendation letter (written for an undergrad student)

How can I wire a 9-position switch so that each position turns on one more LED than the one before?

Negative Resistance

How bug prioritization works in agile projects vs non agile

Nails holding drywall



Do Fourier frequencies actually exist in real life in form of “fundamental frequency”?


Instantaneous frequency vs fourier frequencyOn using eigenvectors to estimate a signals' fundamental frequency, via MUSICFractional Frequency and negative FrequenciesSeparating waves of very close wavelengthsunderstanding windowed fourier ridgesRelationship between filters, Fourier magnitude, and frequencyHPS Algorithm for detecting the fundamental frequency of a guitar stringAlgorithms for finding fundamental frequency based on ACF resultHow to scale fundamental frequency to [0,1]?Pitch perception - Why does our ear not directly detect the missing fundamental frequency?Can the instantaneous frequency be always derived from an analytic signal?













2












$begingroup$


For me, this is a very awkward question to be asked, as at this point in my studies I'm supposed to be quite expert with elementary mathematical tools like Fourier transforms, but this has always bugged me and I've never found a "true" answer to my question, which probably means a lack of elementary concepts at the very root of my knowledge. I've already looked at questions like Instantaneous frequency vs fourier frequency [closed], however I suspect my problem is a little different.



Sorry in advance for the lenght of the question, but I want to try to be as clear as possible in order to describe my doubt. You may as well want to skip to the numbered part if it's too long. Sorry!



In the following, I'll refer to "fundamental frequency" [I later edited the name, as I previously called it, erroneously, "instantaneous frequency", which is why answers are based on that; thanks to robert bristow-johnson and Olli Niemitalo for clearance in the comments] the frequency of any generic sine wave, bolded below:



$$sin(boldsymbol2pi f_0t)$$



Basically, I feel like anything that has to do with Fourier (series, transform, components of the series, etc.) is the result of a mathematical transformation that can be very useful to look into a signal in a different way, focusing on characteristics obtained from such transformation, that certainly have effects in nature, and are called "frequencies". But at the same time I think of them as a totally abstract mathematical concept, if we compare them to the concept of frequency that I'm used to since middle school: I have a periodic function, and it completes a cycle in 1 second, therefore its frequency is 1Hz. In fact, I know this is the same for Fourier frequencies, as each frequency is that "elementary" fundamental frequency of every sinusoid that composes the signal, and up to now, everything is fine for me. I sum an infinity of sine waves, every one with a specific frequency, and I obtain the original signal.



My problem arises when I think of a rectangular signal (in time domain): ideally, or mathematically, I can easily think of it being the sum of waves such that, the more I sum them, the more the final result looks like a rectangle, and so I can refer to each frequency of those waves and "how much frequency" it "uses". But since this sounds so abstract, I can't really think of a rectangular function having frequencies. I am literally taking a function whose support is bounded and well defined, and it is not periodic. Yet, its Fourier transform is a scaled $textsinc$ function, hence its frequency components are not zero everywhere, thus making it very different from the concept of fundamental frequency which is the one I've always been used to. Should I want to define a frequency for it, I must do it through a Fourier transform, as I can't possibly think of a frequency for an aperiodic signal ("canonically" speaking - that is, referring to the concept of frequency that anyone learns in middle-high school). Sure, I can extend the signal's support by considering the whole time axis and thus making the concept of a frequency more understandable, but that's still something very abstract and would still make this frequency very exotic.
This leads me to think that (fundamental) frequency and "Fourier" frequencies are two different concepts that in general behave differently and have nothing in common. And I would be okay with that.



However, it wouldn't be correct, to me, as



  1. when we use a filter to filter a signal, sometimes we refer to the signal's (and filter's) bandwidth, thus this has to be Fourier's domain of frequencies, so I associate the frequencies filtered out by the filter with the Fourier frequencies only, having nothing to do with the fundamental frequency of a signal, due to what I concluded before; yet,

  2. when we filter an electromagnetic signal, we consider its instantaneous frequency as the "band" of frequencies to filter in/out; for example, if it is a radio wave, we make sure to consider a filter that passes high frequencies - and this is surely the concept of frequency I've always been used to, as that frequency can be computed using the wavelength of the real EM wave;

  3. sound is described as a vibration that propagates as a wave of pressure, and that wave's frequency is the sound's frequency. However, a sound is also usually Fourier-transformed in order to look at those frequencies more easily. This kind of suggests that Fourier frequencies are the wave's (fundamental) frequency.

Now, 1. and 2. suggest that in a filter either the term "frequency" is unspecifically used in the Fourier sense and the other depending on the context, creating confusion (to me), or a Fourier frequency has a direct counterpart in the frequency definition used in time-domain. Since 3. seems to confirm that they are indeed correlated, I am led to think that the latter is the right answer. But this totally conflicts with the conclusion I took at the beginning, so in this case I would be even more confused.



Finally, I thought about periodic sine waves and their Fourier series, thinking that their frequency in time domain actually corresponds to one of the only two Dirac's Deltas' frequency in the Fourier series. This would tell me why Fourier frequencies and instantaneous frequencies match when talking about filter applications, but... That's only for sinusoids, as a periodic square wave with period $T$ has frequency $f=frac1T$ and its Fourier transform is actually a sum of deltas that sample a $textsinc$ function every $f$, so the frequencies that it is made of are actually more than one, $f$, invalidating the argument.
I can see that the first harmonic would be the one corresponding to the instantaneous frequency in time domain, but it doesn't still sound right, as there are still leftover frequencies that don't account for the time domain's one, so to me it would seem that, given an ideal filter and a radio signal with frequency $f$, if I want to get that signal only, I filter out all frequencies that are not $f$, according to the instantaneous frequency, but yet when I talk about "filtering frequencies out" I actually talk about Fourier frequencies, and if I consider only the first harmonic, I am basically discarding some parts of the signal itself (the parts with frequency $2f$, $3f$, etc., in frequency domain), which would make no sense if Fourier frequencies were the same frequencies that we talk about everyday, like the frequency of a cosine wave.



Given all contradictions, there is clearly something I'm missing or that I misunderstood, so... I ask you, what could it be?



Again, sorry for the long question and for it being so trivial, but I feel like I am unnecessarily tripping around. I hope I was clear enough.
Thank you in advance and have a good day!










share|improve this question











$endgroup$







  • 1




    $begingroup$
    "as at this point in my studies I'm supposed to be quite expert with elementary mathematical tools like Fourier transforms" You are blessed, or lucky. After 20 years of works with Fourier, I have just reached the level where I almost understand a large part of its practical sides for DSP. To me, Fourier transforms are far from being elementary.
    $endgroup$
    – Laurent Duval
    Apr 18 at 19:39










  • $begingroup$
    instantaneous frequency is not a trivial topic, but normally when we speak of that term, we are talking about a single sinusoid, not about a bunch of sinusoids together (as in a square wave) and we're usually not talking about the instantaneous value of the fundamental frequency of a periodic signal. if you do want to address the instantaneous value of the fundamental frequency of a periodic signal, then the most common term for this subject is " pitch detection ".
    $endgroup$
    – robert bristow-johnson
    Apr 18 at 20:34











  • $begingroup$
    "Instantaneous frequency" refers to the time-wise local value of (time-varying) frequency as function of time, similarly to how "instant" means a moment of time. For a sinusoid, instantaneous frequency is the same everywhere so technically you can call its frequency (a constant) instantaneous frequency, but if you never use the concept of time-varying frequency, then it would be more clear to call it the frequency of the sinusoid.
    $endgroup$
    – Olli Niemitalo
    Apr 21 at 7:18











  • $begingroup$
    You are right, I must have definitely confused the "instantaneous frequency" term with fundamental frequency (I wasn't sure of the actual name as I've always called it just "frequency", which is why I specified what I meant in the bold part)! Thanks for the correction; should I edit the question?
    $endgroup$
    – Maurizio Carcassona
    Apr 21 at 17:29










  • $begingroup$
    @MaurizioCarcassona yes, that would make it more clear.
    $endgroup$
    – Olli Niemitalo
    Apr 22 at 7:39
















2












$begingroup$


For me, this is a very awkward question to be asked, as at this point in my studies I'm supposed to be quite expert with elementary mathematical tools like Fourier transforms, but this has always bugged me and I've never found a "true" answer to my question, which probably means a lack of elementary concepts at the very root of my knowledge. I've already looked at questions like Instantaneous frequency vs fourier frequency [closed], however I suspect my problem is a little different.



Sorry in advance for the lenght of the question, but I want to try to be as clear as possible in order to describe my doubt. You may as well want to skip to the numbered part if it's too long. Sorry!



In the following, I'll refer to "fundamental frequency" [I later edited the name, as I previously called it, erroneously, "instantaneous frequency", which is why answers are based on that; thanks to robert bristow-johnson and Olli Niemitalo for clearance in the comments] the frequency of any generic sine wave, bolded below:



$$sin(boldsymbol2pi f_0t)$$



Basically, I feel like anything that has to do with Fourier (series, transform, components of the series, etc.) is the result of a mathematical transformation that can be very useful to look into a signal in a different way, focusing on characteristics obtained from such transformation, that certainly have effects in nature, and are called "frequencies". But at the same time I think of them as a totally abstract mathematical concept, if we compare them to the concept of frequency that I'm used to since middle school: I have a periodic function, and it completes a cycle in 1 second, therefore its frequency is 1Hz. In fact, I know this is the same for Fourier frequencies, as each frequency is that "elementary" fundamental frequency of every sinusoid that composes the signal, and up to now, everything is fine for me. I sum an infinity of sine waves, every one with a specific frequency, and I obtain the original signal.



My problem arises when I think of a rectangular signal (in time domain): ideally, or mathematically, I can easily think of it being the sum of waves such that, the more I sum them, the more the final result looks like a rectangle, and so I can refer to each frequency of those waves and "how much frequency" it "uses". But since this sounds so abstract, I can't really think of a rectangular function having frequencies. I am literally taking a function whose support is bounded and well defined, and it is not periodic. Yet, its Fourier transform is a scaled $textsinc$ function, hence its frequency components are not zero everywhere, thus making it very different from the concept of fundamental frequency which is the one I've always been used to. Should I want to define a frequency for it, I must do it through a Fourier transform, as I can't possibly think of a frequency for an aperiodic signal ("canonically" speaking - that is, referring to the concept of frequency that anyone learns in middle-high school). Sure, I can extend the signal's support by considering the whole time axis and thus making the concept of a frequency more understandable, but that's still something very abstract and would still make this frequency very exotic.
This leads me to think that (fundamental) frequency and "Fourier" frequencies are two different concepts that in general behave differently and have nothing in common. And I would be okay with that.



However, it wouldn't be correct, to me, as



  1. when we use a filter to filter a signal, sometimes we refer to the signal's (and filter's) bandwidth, thus this has to be Fourier's domain of frequencies, so I associate the frequencies filtered out by the filter with the Fourier frequencies only, having nothing to do with the fundamental frequency of a signal, due to what I concluded before; yet,

  2. when we filter an electromagnetic signal, we consider its instantaneous frequency as the "band" of frequencies to filter in/out; for example, if it is a radio wave, we make sure to consider a filter that passes high frequencies - and this is surely the concept of frequency I've always been used to, as that frequency can be computed using the wavelength of the real EM wave;

  3. sound is described as a vibration that propagates as a wave of pressure, and that wave's frequency is the sound's frequency. However, a sound is also usually Fourier-transformed in order to look at those frequencies more easily. This kind of suggests that Fourier frequencies are the wave's (fundamental) frequency.

Now, 1. and 2. suggest that in a filter either the term "frequency" is unspecifically used in the Fourier sense and the other depending on the context, creating confusion (to me), or a Fourier frequency has a direct counterpart in the frequency definition used in time-domain. Since 3. seems to confirm that they are indeed correlated, I am led to think that the latter is the right answer. But this totally conflicts with the conclusion I took at the beginning, so in this case I would be even more confused.



Finally, I thought about periodic sine waves and their Fourier series, thinking that their frequency in time domain actually corresponds to one of the only two Dirac's Deltas' frequency in the Fourier series. This would tell me why Fourier frequencies and instantaneous frequencies match when talking about filter applications, but... That's only for sinusoids, as a periodic square wave with period $T$ has frequency $f=frac1T$ and its Fourier transform is actually a sum of deltas that sample a $textsinc$ function every $f$, so the frequencies that it is made of are actually more than one, $f$, invalidating the argument.
I can see that the first harmonic would be the one corresponding to the instantaneous frequency in time domain, but it doesn't still sound right, as there are still leftover frequencies that don't account for the time domain's one, so to me it would seem that, given an ideal filter and a radio signal with frequency $f$, if I want to get that signal only, I filter out all frequencies that are not $f$, according to the instantaneous frequency, but yet when I talk about "filtering frequencies out" I actually talk about Fourier frequencies, and if I consider only the first harmonic, I am basically discarding some parts of the signal itself (the parts with frequency $2f$, $3f$, etc., in frequency domain), which would make no sense if Fourier frequencies were the same frequencies that we talk about everyday, like the frequency of a cosine wave.



Given all contradictions, there is clearly something I'm missing or that I misunderstood, so... I ask you, what could it be?



Again, sorry for the long question and for it being so trivial, but I feel like I am unnecessarily tripping around. I hope I was clear enough.
Thank you in advance and have a good day!










share|improve this question











$endgroup$







  • 1




    $begingroup$
    "as at this point in my studies I'm supposed to be quite expert with elementary mathematical tools like Fourier transforms" You are blessed, or lucky. After 20 years of works with Fourier, I have just reached the level where I almost understand a large part of its practical sides for DSP. To me, Fourier transforms are far from being elementary.
    $endgroup$
    – Laurent Duval
    Apr 18 at 19:39










  • $begingroup$
    instantaneous frequency is not a trivial topic, but normally when we speak of that term, we are talking about a single sinusoid, not about a bunch of sinusoids together (as in a square wave) and we're usually not talking about the instantaneous value of the fundamental frequency of a periodic signal. if you do want to address the instantaneous value of the fundamental frequency of a periodic signal, then the most common term for this subject is " pitch detection ".
    $endgroup$
    – robert bristow-johnson
    Apr 18 at 20:34











  • $begingroup$
    "Instantaneous frequency" refers to the time-wise local value of (time-varying) frequency as function of time, similarly to how "instant" means a moment of time. For a sinusoid, instantaneous frequency is the same everywhere so technically you can call its frequency (a constant) instantaneous frequency, but if you never use the concept of time-varying frequency, then it would be more clear to call it the frequency of the sinusoid.
    $endgroup$
    – Olli Niemitalo
    Apr 21 at 7:18











  • $begingroup$
    You are right, I must have definitely confused the "instantaneous frequency" term with fundamental frequency (I wasn't sure of the actual name as I've always called it just "frequency", which is why I specified what I meant in the bold part)! Thanks for the correction; should I edit the question?
    $endgroup$
    – Maurizio Carcassona
    Apr 21 at 17:29










  • $begingroup$
    @MaurizioCarcassona yes, that would make it more clear.
    $endgroup$
    – Olli Niemitalo
    Apr 22 at 7:39














2












2








2


1



$begingroup$


For me, this is a very awkward question to be asked, as at this point in my studies I'm supposed to be quite expert with elementary mathematical tools like Fourier transforms, but this has always bugged me and I've never found a "true" answer to my question, which probably means a lack of elementary concepts at the very root of my knowledge. I've already looked at questions like Instantaneous frequency vs fourier frequency [closed], however I suspect my problem is a little different.



Sorry in advance for the lenght of the question, but I want to try to be as clear as possible in order to describe my doubt. You may as well want to skip to the numbered part if it's too long. Sorry!



In the following, I'll refer to "fundamental frequency" [I later edited the name, as I previously called it, erroneously, "instantaneous frequency", which is why answers are based on that; thanks to robert bristow-johnson and Olli Niemitalo for clearance in the comments] the frequency of any generic sine wave, bolded below:



$$sin(boldsymbol2pi f_0t)$$



Basically, I feel like anything that has to do with Fourier (series, transform, components of the series, etc.) is the result of a mathematical transformation that can be very useful to look into a signal in a different way, focusing on characteristics obtained from such transformation, that certainly have effects in nature, and are called "frequencies". But at the same time I think of them as a totally abstract mathematical concept, if we compare them to the concept of frequency that I'm used to since middle school: I have a periodic function, and it completes a cycle in 1 second, therefore its frequency is 1Hz. In fact, I know this is the same for Fourier frequencies, as each frequency is that "elementary" fundamental frequency of every sinusoid that composes the signal, and up to now, everything is fine for me. I sum an infinity of sine waves, every one with a specific frequency, and I obtain the original signal.



My problem arises when I think of a rectangular signal (in time domain): ideally, or mathematically, I can easily think of it being the sum of waves such that, the more I sum them, the more the final result looks like a rectangle, and so I can refer to each frequency of those waves and "how much frequency" it "uses". But since this sounds so abstract, I can't really think of a rectangular function having frequencies. I am literally taking a function whose support is bounded and well defined, and it is not periodic. Yet, its Fourier transform is a scaled $textsinc$ function, hence its frequency components are not zero everywhere, thus making it very different from the concept of fundamental frequency which is the one I've always been used to. Should I want to define a frequency for it, I must do it through a Fourier transform, as I can't possibly think of a frequency for an aperiodic signal ("canonically" speaking - that is, referring to the concept of frequency that anyone learns in middle-high school). Sure, I can extend the signal's support by considering the whole time axis and thus making the concept of a frequency more understandable, but that's still something very abstract and would still make this frequency very exotic.
This leads me to think that (fundamental) frequency and "Fourier" frequencies are two different concepts that in general behave differently and have nothing in common. And I would be okay with that.



However, it wouldn't be correct, to me, as



  1. when we use a filter to filter a signal, sometimes we refer to the signal's (and filter's) bandwidth, thus this has to be Fourier's domain of frequencies, so I associate the frequencies filtered out by the filter with the Fourier frequencies only, having nothing to do with the fundamental frequency of a signal, due to what I concluded before; yet,

  2. when we filter an electromagnetic signal, we consider its instantaneous frequency as the "band" of frequencies to filter in/out; for example, if it is a radio wave, we make sure to consider a filter that passes high frequencies - and this is surely the concept of frequency I've always been used to, as that frequency can be computed using the wavelength of the real EM wave;

  3. sound is described as a vibration that propagates as a wave of pressure, and that wave's frequency is the sound's frequency. However, a sound is also usually Fourier-transformed in order to look at those frequencies more easily. This kind of suggests that Fourier frequencies are the wave's (fundamental) frequency.

Now, 1. and 2. suggest that in a filter either the term "frequency" is unspecifically used in the Fourier sense and the other depending on the context, creating confusion (to me), or a Fourier frequency has a direct counterpart in the frequency definition used in time-domain. Since 3. seems to confirm that they are indeed correlated, I am led to think that the latter is the right answer. But this totally conflicts with the conclusion I took at the beginning, so in this case I would be even more confused.



Finally, I thought about periodic sine waves and their Fourier series, thinking that their frequency in time domain actually corresponds to one of the only two Dirac's Deltas' frequency in the Fourier series. This would tell me why Fourier frequencies and instantaneous frequencies match when talking about filter applications, but... That's only for sinusoids, as a periodic square wave with period $T$ has frequency $f=frac1T$ and its Fourier transform is actually a sum of deltas that sample a $textsinc$ function every $f$, so the frequencies that it is made of are actually more than one, $f$, invalidating the argument.
I can see that the first harmonic would be the one corresponding to the instantaneous frequency in time domain, but it doesn't still sound right, as there are still leftover frequencies that don't account for the time domain's one, so to me it would seem that, given an ideal filter and a radio signal with frequency $f$, if I want to get that signal only, I filter out all frequencies that are not $f$, according to the instantaneous frequency, but yet when I talk about "filtering frequencies out" I actually talk about Fourier frequencies, and if I consider only the first harmonic, I am basically discarding some parts of the signal itself (the parts with frequency $2f$, $3f$, etc., in frequency domain), which would make no sense if Fourier frequencies were the same frequencies that we talk about everyday, like the frequency of a cosine wave.



Given all contradictions, there is clearly something I'm missing or that I misunderstood, so... I ask you, what could it be?



Again, sorry for the long question and for it being so trivial, but I feel like I am unnecessarily tripping around. I hope I was clear enough.
Thank you in advance and have a good day!










share|improve this question











$endgroup$




For me, this is a very awkward question to be asked, as at this point in my studies I'm supposed to be quite expert with elementary mathematical tools like Fourier transforms, but this has always bugged me and I've never found a "true" answer to my question, which probably means a lack of elementary concepts at the very root of my knowledge. I've already looked at questions like Instantaneous frequency vs fourier frequency [closed], however I suspect my problem is a little different.



Sorry in advance for the lenght of the question, but I want to try to be as clear as possible in order to describe my doubt. You may as well want to skip to the numbered part if it's too long. Sorry!



In the following, I'll refer to "fundamental frequency" [I later edited the name, as I previously called it, erroneously, "instantaneous frequency", which is why answers are based on that; thanks to robert bristow-johnson and Olli Niemitalo for clearance in the comments] the frequency of any generic sine wave, bolded below:



$$sin(boldsymbol2pi f_0t)$$



Basically, I feel like anything that has to do with Fourier (series, transform, components of the series, etc.) is the result of a mathematical transformation that can be very useful to look into a signal in a different way, focusing on characteristics obtained from such transformation, that certainly have effects in nature, and are called "frequencies". But at the same time I think of them as a totally abstract mathematical concept, if we compare them to the concept of frequency that I'm used to since middle school: I have a periodic function, and it completes a cycle in 1 second, therefore its frequency is 1Hz. In fact, I know this is the same for Fourier frequencies, as each frequency is that "elementary" fundamental frequency of every sinusoid that composes the signal, and up to now, everything is fine for me. I sum an infinity of sine waves, every one with a specific frequency, and I obtain the original signal.



My problem arises when I think of a rectangular signal (in time domain): ideally, or mathematically, I can easily think of it being the sum of waves such that, the more I sum them, the more the final result looks like a rectangle, and so I can refer to each frequency of those waves and "how much frequency" it "uses". But since this sounds so abstract, I can't really think of a rectangular function having frequencies. I am literally taking a function whose support is bounded and well defined, and it is not periodic. Yet, its Fourier transform is a scaled $textsinc$ function, hence its frequency components are not zero everywhere, thus making it very different from the concept of fundamental frequency which is the one I've always been used to. Should I want to define a frequency for it, I must do it through a Fourier transform, as I can't possibly think of a frequency for an aperiodic signal ("canonically" speaking - that is, referring to the concept of frequency that anyone learns in middle-high school). Sure, I can extend the signal's support by considering the whole time axis and thus making the concept of a frequency more understandable, but that's still something very abstract and would still make this frequency very exotic.
This leads me to think that (fundamental) frequency and "Fourier" frequencies are two different concepts that in general behave differently and have nothing in common. And I would be okay with that.



However, it wouldn't be correct, to me, as



  1. when we use a filter to filter a signal, sometimes we refer to the signal's (and filter's) bandwidth, thus this has to be Fourier's domain of frequencies, so I associate the frequencies filtered out by the filter with the Fourier frequencies only, having nothing to do with the fundamental frequency of a signal, due to what I concluded before; yet,

  2. when we filter an electromagnetic signal, we consider its instantaneous frequency as the "band" of frequencies to filter in/out; for example, if it is a radio wave, we make sure to consider a filter that passes high frequencies - and this is surely the concept of frequency I've always been used to, as that frequency can be computed using the wavelength of the real EM wave;

  3. sound is described as a vibration that propagates as a wave of pressure, and that wave's frequency is the sound's frequency. However, a sound is also usually Fourier-transformed in order to look at those frequencies more easily. This kind of suggests that Fourier frequencies are the wave's (fundamental) frequency.

Now, 1. and 2. suggest that in a filter either the term "frequency" is unspecifically used in the Fourier sense and the other depending on the context, creating confusion (to me), or a Fourier frequency has a direct counterpart in the frequency definition used in time-domain. Since 3. seems to confirm that they are indeed correlated, I am led to think that the latter is the right answer. But this totally conflicts with the conclusion I took at the beginning, so in this case I would be even more confused.



Finally, I thought about periodic sine waves and their Fourier series, thinking that their frequency in time domain actually corresponds to one of the only two Dirac's Deltas' frequency in the Fourier series. This would tell me why Fourier frequencies and instantaneous frequencies match when talking about filter applications, but... That's only for sinusoids, as a periodic square wave with period $T$ has frequency $f=frac1T$ and its Fourier transform is actually a sum of deltas that sample a $textsinc$ function every $f$, so the frequencies that it is made of are actually more than one, $f$, invalidating the argument.
I can see that the first harmonic would be the one corresponding to the instantaneous frequency in time domain, but it doesn't still sound right, as there are still leftover frequencies that don't account for the time domain's one, so to me it would seem that, given an ideal filter and a radio signal with frequency $f$, if I want to get that signal only, I filter out all frequencies that are not $f$, according to the instantaneous frequency, but yet when I talk about "filtering frequencies out" I actually talk about Fourier frequencies, and if I consider only the first harmonic, I am basically discarding some parts of the signal itself (the parts with frequency $2f$, $3f$, etc., in frequency domain), which would make no sense if Fourier frequencies were the same frequencies that we talk about everyday, like the frequency of a cosine wave.



Given all contradictions, there is clearly something I'm missing or that I misunderstood, so... I ask you, what could it be?



Again, sorry for the long question and for it being so trivial, but I feel like I am unnecessarily tripping around. I hope I was clear enough.
Thank you in advance and have a good day!







frequency fourier






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 22 at 19:18







Maurizio Carcassona

















asked Apr 18 at 14:38









Maurizio CarcassonaMaurizio Carcassona

135




135







  • 1




    $begingroup$
    "as at this point in my studies I'm supposed to be quite expert with elementary mathematical tools like Fourier transforms" You are blessed, or lucky. After 20 years of works with Fourier, I have just reached the level where I almost understand a large part of its practical sides for DSP. To me, Fourier transforms are far from being elementary.
    $endgroup$
    – Laurent Duval
    Apr 18 at 19:39










  • $begingroup$
    instantaneous frequency is not a trivial topic, but normally when we speak of that term, we are talking about a single sinusoid, not about a bunch of sinusoids together (as in a square wave) and we're usually not talking about the instantaneous value of the fundamental frequency of a periodic signal. if you do want to address the instantaneous value of the fundamental frequency of a periodic signal, then the most common term for this subject is " pitch detection ".
    $endgroup$
    – robert bristow-johnson
    Apr 18 at 20:34











  • $begingroup$
    "Instantaneous frequency" refers to the time-wise local value of (time-varying) frequency as function of time, similarly to how "instant" means a moment of time. For a sinusoid, instantaneous frequency is the same everywhere so technically you can call its frequency (a constant) instantaneous frequency, but if you never use the concept of time-varying frequency, then it would be more clear to call it the frequency of the sinusoid.
    $endgroup$
    – Olli Niemitalo
    Apr 21 at 7:18











  • $begingroup$
    You are right, I must have definitely confused the "instantaneous frequency" term with fundamental frequency (I wasn't sure of the actual name as I've always called it just "frequency", which is why I specified what I meant in the bold part)! Thanks for the correction; should I edit the question?
    $endgroup$
    – Maurizio Carcassona
    Apr 21 at 17:29










  • $begingroup$
    @MaurizioCarcassona yes, that would make it more clear.
    $endgroup$
    – Olli Niemitalo
    Apr 22 at 7:39













  • 1




    $begingroup$
    "as at this point in my studies I'm supposed to be quite expert with elementary mathematical tools like Fourier transforms" You are blessed, or lucky. After 20 years of works with Fourier, I have just reached the level where I almost understand a large part of its practical sides for DSP. To me, Fourier transforms are far from being elementary.
    $endgroup$
    – Laurent Duval
    Apr 18 at 19:39










  • $begingroup$
    instantaneous frequency is not a trivial topic, but normally when we speak of that term, we are talking about a single sinusoid, not about a bunch of sinusoids together (as in a square wave) and we're usually not talking about the instantaneous value of the fundamental frequency of a periodic signal. if you do want to address the instantaneous value of the fundamental frequency of a periodic signal, then the most common term for this subject is " pitch detection ".
    $endgroup$
    – robert bristow-johnson
    Apr 18 at 20:34











  • $begingroup$
    "Instantaneous frequency" refers to the time-wise local value of (time-varying) frequency as function of time, similarly to how "instant" means a moment of time. For a sinusoid, instantaneous frequency is the same everywhere so technically you can call its frequency (a constant) instantaneous frequency, but if you never use the concept of time-varying frequency, then it would be more clear to call it the frequency of the sinusoid.
    $endgroup$
    – Olli Niemitalo
    Apr 21 at 7:18











  • $begingroup$
    You are right, I must have definitely confused the "instantaneous frequency" term with fundamental frequency (I wasn't sure of the actual name as I've always called it just "frequency", which is why I specified what I meant in the bold part)! Thanks for the correction; should I edit the question?
    $endgroup$
    – Maurizio Carcassona
    Apr 21 at 17:29










  • $begingroup$
    @MaurizioCarcassona yes, that would make it more clear.
    $endgroup$
    – Olli Niemitalo
    Apr 22 at 7:39








1




1




$begingroup$
"as at this point in my studies I'm supposed to be quite expert with elementary mathematical tools like Fourier transforms" You are blessed, or lucky. After 20 years of works with Fourier, I have just reached the level where I almost understand a large part of its practical sides for DSP. To me, Fourier transforms are far from being elementary.
$endgroup$
– Laurent Duval
Apr 18 at 19:39




$begingroup$
"as at this point in my studies I'm supposed to be quite expert with elementary mathematical tools like Fourier transforms" You are blessed, or lucky. After 20 years of works with Fourier, I have just reached the level where I almost understand a large part of its practical sides for DSP. To me, Fourier transforms are far from being elementary.
$endgroup$
– Laurent Duval
Apr 18 at 19:39












$begingroup$
instantaneous frequency is not a trivial topic, but normally when we speak of that term, we are talking about a single sinusoid, not about a bunch of sinusoids together (as in a square wave) and we're usually not talking about the instantaneous value of the fundamental frequency of a periodic signal. if you do want to address the instantaneous value of the fundamental frequency of a periodic signal, then the most common term for this subject is " pitch detection ".
$endgroup$
– robert bristow-johnson
Apr 18 at 20:34





$begingroup$
instantaneous frequency is not a trivial topic, but normally when we speak of that term, we are talking about a single sinusoid, not about a bunch of sinusoids together (as in a square wave) and we're usually not talking about the instantaneous value of the fundamental frequency of a periodic signal. if you do want to address the instantaneous value of the fundamental frequency of a periodic signal, then the most common term for this subject is " pitch detection ".
$endgroup$
– robert bristow-johnson
Apr 18 at 20:34













$begingroup$
"Instantaneous frequency" refers to the time-wise local value of (time-varying) frequency as function of time, similarly to how "instant" means a moment of time. For a sinusoid, instantaneous frequency is the same everywhere so technically you can call its frequency (a constant) instantaneous frequency, but if you never use the concept of time-varying frequency, then it would be more clear to call it the frequency of the sinusoid.
$endgroup$
– Olli Niemitalo
Apr 21 at 7:18





$begingroup$
"Instantaneous frequency" refers to the time-wise local value of (time-varying) frequency as function of time, similarly to how "instant" means a moment of time. For a sinusoid, instantaneous frequency is the same everywhere so technically you can call its frequency (a constant) instantaneous frequency, but if you never use the concept of time-varying frequency, then it would be more clear to call it the frequency of the sinusoid.
$endgroup$
– Olli Niemitalo
Apr 21 at 7:18













$begingroup$
You are right, I must have definitely confused the "instantaneous frequency" term with fundamental frequency (I wasn't sure of the actual name as I've always called it just "frequency", which is why I specified what I meant in the bold part)! Thanks for the correction; should I edit the question?
$endgroup$
– Maurizio Carcassona
Apr 21 at 17:29




$begingroup$
You are right, I must have definitely confused the "instantaneous frequency" term with fundamental frequency (I wasn't sure of the actual name as I've always called it just "frequency", which is why I specified what I meant in the bold part)! Thanks for the correction; should I edit the question?
$endgroup$
– Maurizio Carcassona
Apr 21 at 17:29












$begingroup$
@MaurizioCarcassona yes, that would make it more clear.
$endgroup$
– Olli Niemitalo
Apr 22 at 7:39





$begingroup$
@MaurizioCarcassona yes, that would make it more clear.
$endgroup$
– Olli Niemitalo
Apr 22 at 7:39











2 Answers
2






active

oldest

votes


















2












$begingroup$

I think the main point you are missing is that the DFT occurs over a span of time and is not instantaneous. There is an inherent contradiction there that you can never resolve. The pure tone case will "bridge" the two concepts, but it is still not the same.



I have written several blog articles on finding the instantaneous-as-possible frequency in the time domain of a single pure tone that is varying in frequency.



6. Near Instantaneous Frequency Formulas



  • Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)

  • Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

  • Exact Near Instantaneous Frequency Formulas Best at Zero Crossings

You might find the section labelled "What is an Instantaneous Frequency?" helpful. Particularly the closing lines: "If two, or more, pure tones are added together, the concept of what an instantaneous frequency is becomes a little bit fuzzy. "



Most of my blog articles are dedicated to understanding the DFT better, with many new novel formulas introduced.




To answer your title question more directly: No.



The only case for which "Fourier Frequencies" correspond to "real frequencies" is the case of a periodic signal with a whole number of cycles in the DFT frame. The concept of an "instantaneous" frequency is a different concept altogether, and not well defined, nor definable, except in simple cases.






share|improve this answer











$endgroup$








  • 1




    $begingroup$
    Nice posts! :-)
    $endgroup$
    – Peter K.
    Apr 18 at 15:36






  • 1




    $begingroup$
    @PeterK., Thanks, that means a lot.
    $endgroup$
    – Cedron Dawg
    Apr 18 at 16:13










  • $begingroup$
    i didn't know about them, and i might have thunk i had seen Clay Turner's stuff before.
    $endgroup$
    – robert bristow-johnson
    Apr 18 at 19:10










  • $begingroup$
    @robertbristow-johnson,My blog articles are an extension to my comments in Lyons' original article: dsprelated.com/showarticle/1045.php What I added to the stew was a generalization to more points, a different derivation methodology, and highlighting the distinction of which formulas work best at which part of the cycle. Lyons only partially addresses the last point. As far as I know, the generalization and the derivation are novel.
    $endgroup$
    – Cedron Dawg
    Apr 18 at 20:04










  • $begingroup$
    (continued) I had not seen these formulas previously either, even though I implicitly used the base case two years earlier in probably my most important blog article dsprelated.com/showarticle/771.php as eq (29).
    $endgroup$
    – Cedron Dawg
    Apr 18 at 20:04


















1












$begingroup$

You may be confusing multiple terms, which are loosely related, but do not describe exactly the same thing.



Fourier frequencies are a mathematical decomposition, which may have little to do with the primary features of a periodicity, such as a physical vibration or a musical pitch. e.g. A pitch can have a missing fundamental in its Fourier spectrum.



Instantaneous frequency is a characteristic of pure theoretically perfect sine waves (or complex exponentials). Infinitely long perfect sine waves do not exist "in real life" (e.g. the universe seems to be finite in origin time, total energy, and quantized). Actual narrow-band signals are only approximated by these theoretical perfect sine waves, thus instantaneous frequency is only an estimate of an approximation, which depends on how closely the signal approximates some theoretically perfect sine wave over some non-zero interval. (choose your interval and your error tolerance.)



If you look at the Fourier decomposition, then any real signal ends up with an infinite number of "instantaneous frequencies". So the answer is any or all. Or for a DFT, you may end up with N non-zero frequencies, one for each bin.



But if there is a clear peak in a DFT, say 10X bigger than the rest of the spectrum combined, then the waveform might look enough like a perfect sine wave (if you squint) that one can procedurally ignore everything except that magnitude peak and assume only one "instantaneous frequency". Or, conversely, one might determine a local periodicity via autocorrelation/amdf/asdf/cepstrum/etc., and estimate an "instantaneous frequency" based on the reciprocal of this periodicity, even if the fundamental is completely missing from the spectrum (e.g. signal looks nothing like a sine wave at that frequency).






share|improve this answer











$endgroup$












  • $begingroup$
    Thank you too very much for your answer, you both contributed to make the concept more clear (and yes I was referring to ideal periodic waves)! Unfortunately, I can choose only one best answer and I chose the chronologically first answer posted, but I'd give it to both if I could because both of you were very helpful with addressing issues with terms I used. Thanks again!
    $endgroup$
    – Maurizio Carcassona
    Apr 22 at 19:25











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "295"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56781%2fdo-fourier-frequencies-actually-exist-in-real-life-in-form-of-fundamental-frequ%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

I think the main point you are missing is that the DFT occurs over a span of time and is not instantaneous. There is an inherent contradiction there that you can never resolve. The pure tone case will "bridge" the two concepts, but it is still not the same.



I have written several blog articles on finding the instantaneous-as-possible frequency in the time domain of a single pure tone that is varying in frequency.



6. Near Instantaneous Frequency Formulas



  • Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)

  • Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

  • Exact Near Instantaneous Frequency Formulas Best at Zero Crossings

You might find the section labelled "What is an Instantaneous Frequency?" helpful. Particularly the closing lines: "If two, or more, pure tones are added together, the concept of what an instantaneous frequency is becomes a little bit fuzzy. "



Most of my blog articles are dedicated to understanding the DFT better, with many new novel formulas introduced.




To answer your title question more directly: No.



The only case for which "Fourier Frequencies" correspond to "real frequencies" is the case of a periodic signal with a whole number of cycles in the DFT frame. The concept of an "instantaneous" frequency is a different concept altogether, and not well defined, nor definable, except in simple cases.






share|improve this answer











$endgroup$








  • 1




    $begingroup$
    Nice posts! :-)
    $endgroup$
    – Peter K.
    Apr 18 at 15:36






  • 1




    $begingroup$
    @PeterK., Thanks, that means a lot.
    $endgroup$
    – Cedron Dawg
    Apr 18 at 16:13










  • $begingroup$
    i didn't know about them, and i might have thunk i had seen Clay Turner's stuff before.
    $endgroup$
    – robert bristow-johnson
    Apr 18 at 19:10










  • $begingroup$
    @robertbristow-johnson,My blog articles are an extension to my comments in Lyons' original article: dsprelated.com/showarticle/1045.php What I added to the stew was a generalization to more points, a different derivation methodology, and highlighting the distinction of which formulas work best at which part of the cycle. Lyons only partially addresses the last point. As far as I know, the generalization and the derivation are novel.
    $endgroup$
    – Cedron Dawg
    Apr 18 at 20:04










  • $begingroup$
    (continued) I had not seen these formulas previously either, even though I implicitly used the base case two years earlier in probably my most important blog article dsprelated.com/showarticle/771.php as eq (29).
    $endgroup$
    – Cedron Dawg
    Apr 18 at 20:04















2












$begingroup$

I think the main point you are missing is that the DFT occurs over a span of time and is not instantaneous. There is an inherent contradiction there that you can never resolve. The pure tone case will "bridge" the two concepts, but it is still not the same.



I have written several blog articles on finding the instantaneous-as-possible frequency in the time domain of a single pure tone that is varying in frequency.



6. Near Instantaneous Frequency Formulas



  • Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)

  • Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

  • Exact Near Instantaneous Frequency Formulas Best at Zero Crossings

You might find the section labelled "What is an Instantaneous Frequency?" helpful. Particularly the closing lines: "If two, or more, pure tones are added together, the concept of what an instantaneous frequency is becomes a little bit fuzzy. "



Most of my blog articles are dedicated to understanding the DFT better, with many new novel formulas introduced.




To answer your title question more directly: No.



The only case for which "Fourier Frequencies" correspond to "real frequencies" is the case of a periodic signal with a whole number of cycles in the DFT frame. The concept of an "instantaneous" frequency is a different concept altogether, and not well defined, nor definable, except in simple cases.






share|improve this answer











$endgroup$








  • 1




    $begingroup$
    Nice posts! :-)
    $endgroup$
    – Peter K.
    Apr 18 at 15:36






  • 1




    $begingroup$
    @PeterK., Thanks, that means a lot.
    $endgroup$
    – Cedron Dawg
    Apr 18 at 16:13










  • $begingroup$
    i didn't know about them, and i might have thunk i had seen Clay Turner's stuff before.
    $endgroup$
    – robert bristow-johnson
    Apr 18 at 19:10










  • $begingroup$
    @robertbristow-johnson,My blog articles are an extension to my comments in Lyons' original article: dsprelated.com/showarticle/1045.php What I added to the stew was a generalization to more points, a different derivation methodology, and highlighting the distinction of which formulas work best at which part of the cycle. Lyons only partially addresses the last point. As far as I know, the generalization and the derivation are novel.
    $endgroup$
    – Cedron Dawg
    Apr 18 at 20:04










  • $begingroup$
    (continued) I had not seen these formulas previously either, even though I implicitly used the base case two years earlier in probably my most important blog article dsprelated.com/showarticle/771.php as eq (29).
    $endgroup$
    – Cedron Dawg
    Apr 18 at 20:04













2












2








2





$begingroup$

I think the main point you are missing is that the DFT occurs over a span of time and is not instantaneous. There is an inherent contradiction there that you can never resolve. The pure tone case will "bridge" the two concepts, but it is still not the same.



I have written several blog articles on finding the instantaneous-as-possible frequency in the time domain of a single pure tone that is varying in frequency.



6. Near Instantaneous Frequency Formulas



  • Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)

  • Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

  • Exact Near Instantaneous Frequency Formulas Best at Zero Crossings

You might find the section labelled "What is an Instantaneous Frequency?" helpful. Particularly the closing lines: "If two, or more, pure tones are added together, the concept of what an instantaneous frequency is becomes a little bit fuzzy. "



Most of my blog articles are dedicated to understanding the DFT better, with many new novel formulas introduced.




To answer your title question more directly: No.



The only case for which "Fourier Frequencies" correspond to "real frequencies" is the case of a periodic signal with a whole number of cycles in the DFT frame. The concept of an "instantaneous" frequency is a different concept altogether, and not well defined, nor definable, except in simple cases.






share|improve this answer











$endgroup$



I think the main point you are missing is that the DFT occurs over a span of time and is not instantaneous. There is an inherent contradiction there that you can never resolve. The pure tone case will "bridge" the two concepts, but it is still not the same.



I have written several blog articles on finding the instantaneous-as-possible frequency in the time domain of a single pure tone that is varying in frequency.



6. Near Instantaneous Frequency Formulas



  • Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 1)

  • Exact Near Instantaneous Frequency Formulas Best at Peaks (Part 2)

  • Exact Near Instantaneous Frequency Formulas Best at Zero Crossings

You might find the section labelled "What is an Instantaneous Frequency?" helpful. Particularly the closing lines: "If two, or more, pure tones are added together, the concept of what an instantaneous frequency is becomes a little bit fuzzy. "



Most of my blog articles are dedicated to understanding the DFT better, with many new novel formulas introduced.




To answer your title question more directly: No.



The only case for which "Fourier Frequencies" correspond to "real frequencies" is the case of a periodic signal with a whole number of cycles in the DFT frame. The concept of an "instantaneous" frequency is a different concept altogether, and not well defined, nor definable, except in simple cases.







share|improve this answer














share|improve this answer



share|improve this answer








edited Apr 18 at 15:28

























answered Apr 18 at 15:08









Cedron DawgCedron Dawg

3,2282312




3,2282312







  • 1




    $begingroup$
    Nice posts! :-)
    $endgroup$
    – Peter K.
    Apr 18 at 15:36






  • 1




    $begingroup$
    @PeterK., Thanks, that means a lot.
    $endgroup$
    – Cedron Dawg
    Apr 18 at 16:13










  • $begingroup$
    i didn't know about them, and i might have thunk i had seen Clay Turner's stuff before.
    $endgroup$
    – robert bristow-johnson
    Apr 18 at 19:10










  • $begingroup$
    @robertbristow-johnson,My blog articles are an extension to my comments in Lyons' original article: dsprelated.com/showarticle/1045.php What I added to the stew was a generalization to more points, a different derivation methodology, and highlighting the distinction of which formulas work best at which part of the cycle. Lyons only partially addresses the last point. As far as I know, the generalization and the derivation are novel.
    $endgroup$
    – Cedron Dawg
    Apr 18 at 20:04










  • $begingroup$
    (continued) I had not seen these formulas previously either, even though I implicitly used the base case two years earlier in probably my most important blog article dsprelated.com/showarticle/771.php as eq (29).
    $endgroup$
    – Cedron Dawg
    Apr 18 at 20:04












  • 1




    $begingroup$
    Nice posts! :-)
    $endgroup$
    – Peter K.
    Apr 18 at 15:36






  • 1




    $begingroup$
    @PeterK., Thanks, that means a lot.
    $endgroup$
    – Cedron Dawg
    Apr 18 at 16:13










  • $begingroup$
    i didn't know about them, and i might have thunk i had seen Clay Turner's stuff before.
    $endgroup$
    – robert bristow-johnson
    Apr 18 at 19:10










  • $begingroup$
    @robertbristow-johnson,My blog articles are an extension to my comments in Lyons' original article: dsprelated.com/showarticle/1045.php What I added to the stew was a generalization to more points, a different derivation methodology, and highlighting the distinction of which formulas work best at which part of the cycle. Lyons only partially addresses the last point. As far as I know, the generalization and the derivation are novel.
    $endgroup$
    – Cedron Dawg
    Apr 18 at 20:04










  • $begingroup$
    (continued) I had not seen these formulas previously either, even though I implicitly used the base case two years earlier in probably my most important blog article dsprelated.com/showarticle/771.php as eq (29).
    $endgroup$
    – Cedron Dawg
    Apr 18 at 20:04







1




1




$begingroup$
Nice posts! :-)
$endgroup$
– Peter K.
Apr 18 at 15:36




$begingroup$
Nice posts! :-)
$endgroup$
– Peter K.
Apr 18 at 15:36




1




1




$begingroup$
@PeterK., Thanks, that means a lot.
$endgroup$
– Cedron Dawg
Apr 18 at 16:13




$begingroup$
@PeterK., Thanks, that means a lot.
$endgroup$
– Cedron Dawg
Apr 18 at 16:13












$begingroup$
i didn't know about them, and i might have thunk i had seen Clay Turner's stuff before.
$endgroup$
– robert bristow-johnson
Apr 18 at 19:10




$begingroup$
i didn't know about them, and i might have thunk i had seen Clay Turner's stuff before.
$endgroup$
– robert bristow-johnson
Apr 18 at 19:10












$begingroup$
@robertbristow-johnson,My blog articles are an extension to my comments in Lyons' original article: dsprelated.com/showarticle/1045.php What I added to the stew was a generalization to more points, a different derivation methodology, and highlighting the distinction of which formulas work best at which part of the cycle. Lyons only partially addresses the last point. As far as I know, the generalization and the derivation are novel.
$endgroup$
– Cedron Dawg
Apr 18 at 20:04




$begingroup$
@robertbristow-johnson,My blog articles are an extension to my comments in Lyons' original article: dsprelated.com/showarticle/1045.php What I added to the stew was a generalization to more points, a different derivation methodology, and highlighting the distinction of which formulas work best at which part of the cycle. Lyons only partially addresses the last point. As far as I know, the generalization and the derivation are novel.
$endgroup$
– Cedron Dawg
Apr 18 at 20:04












$begingroup$
(continued) I had not seen these formulas previously either, even though I implicitly used the base case two years earlier in probably my most important blog article dsprelated.com/showarticle/771.php as eq (29).
$endgroup$
– Cedron Dawg
Apr 18 at 20:04




$begingroup$
(continued) I had not seen these formulas previously either, even though I implicitly used the base case two years earlier in probably my most important blog article dsprelated.com/showarticle/771.php as eq (29).
$endgroup$
– Cedron Dawg
Apr 18 at 20:04











1












$begingroup$

You may be confusing multiple terms, which are loosely related, but do not describe exactly the same thing.



Fourier frequencies are a mathematical decomposition, which may have little to do with the primary features of a periodicity, such as a physical vibration or a musical pitch. e.g. A pitch can have a missing fundamental in its Fourier spectrum.



Instantaneous frequency is a characteristic of pure theoretically perfect sine waves (or complex exponentials). Infinitely long perfect sine waves do not exist "in real life" (e.g. the universe seems to be finite in origin time, total energy, and quantized). Actual narrow-band signals are only approximated by these theoretical perfect sine waves, thus instantaneous frequency is only an estimate of an approximation, which depends on how closely the signal approximates some theoretically perfect sine wave over some non-zero interval. (choose your interval and your error tolerance.)



If you look at the Fourier decomposition, then any real signal ends up with an infinite number of "instantaneous frequencies". So the answer is any or all. Or for a DFT, you may end up with N non-zero frequencies, one for each bin.



But if there is a clear peak in a DFT, say 10X bigger than the rest of the spectrum combined, then the waveform might look enough like a perfect sine wave (if you squint) that one can procedurally ignore everything except that magnitude peak and assume only one "instantaneous frequency". Or, conversely, one might determine a local periodicity via autocorrelation/amdf/asdf/cepstrum/etc., and estimate an "instantaneous frequency" based on the reciprocal of this periodicity, even if the fundamental is completely missing from the spectrum (e.g. signal looks nothing like a sine wave at that frequency).






share|improve this answer











$endgroup$












  • $begingroup$
    Thank you too very much for your answer, you both contributed to make the concept more clear (and yes I was referring to ideal periodic waves)! Unfortunately, I can choose only one best answer and I chose the chronologically first answer posted, but I'd give it to both if I could because both of you were very helpful with addressing issues with terms I used. Thanks again!
    $endgroup$
    – Maurizio Carcassona
    Apr 22 at 19:25















1












$begingroup$

You may be confusing multiple terms, which are loosely related, but do not describe exactly the same thing.



Fourier frequencies are a mathematical decomposition, which may have little to do with the primary features of a periodicity, such as a physical vibration or a musical pitch. e.g. A pitch can have a missing fundamental in its Fourier spectrum.



Instantaneous frequency is a characteristic of pure theoretically perfect sine waves (or complex exponentials). Infinitely long perfect sine waves do not exist "in real life" (e.g. the universe seems to be finite in origin time, total energy, and quantized). Actual narrow-band signals are only approximated by these theoretical perfect sine waves, thus instantaneous frequency is only an estimate of an approximation, which depends on how closely the signal approximates some theoretically perfect sine wave over some non-zero interval. (choose your interval and your error tolerance.)



If you look at the Fourier decomposition, then any real signal ends up with an infinite number of "instantaneous frequencies". So the answer is any or all. Or for a DFT, you may end up with N non-zero frequencies, one for each bin.



But if there is a clear peak in a DFT, say 10X bigger than the rest of the spectrum combined, then the waveform might look enough like a perfect sine wave (if you squint) that one can procedurally ignore everything except that magnitude peak and assume only one "instantaneous frequency". Or, conversely, one might determine a local periodicity via autocorrelation/amdf/asdf/cepstrum/etc., and estimate an "instantaneous frequency" based on the reciprocal of this periodicity, even if the fundamental is completely missing from the spectrum (e.g. signal looks nothing like a sine wave at that frequency).






share|improve this answer











$endgroup$












  • $begingroup$
    Thank you too very much for your answer, you both contributed to make the concept more clear (and yes I was referring to ideal periodic waves)! Unfortunately, I can choose only one best answer and I chose the chronologically first answer posted, but I'd give it to both if I could because both of you were very helpful with addressing issues with terms I used. Thanks again!
    $endgroup$
    – Maurizio Carcassona
    Apr 22 at 19:25













1












1








1





$begingroup$

You may be confusing multiple terms, which are loosely related, but do not describe exactly the same thing.



Fourier frequencies are a mathematical decomposition, which may have little to do with the primary features of a periodicity, such as a physical vibration or a musical pitch. e.g. A pitch can have a missing fundamental in its Fourier spectrum.



Instantaneous frequency is a characteristic of pure theoretically perfect sine waves (or complex exponentials). Infinitely long perfect sine waves do not exist "in real life" (e.g. the universe seems to be finite in origin time, total energy, and quantized). Actual narrow-band signals are only approximated by these theoretical perfect sine waves, thus instantaneous frequency is only an estimate of an approximation, which depends on how closely the signal approximates some theoretically perfect sine wave over some non-zero interval. (choose your interval and your error tolerance.)



If you look at the Fourier decomposition, then any real signal ends up with an infinite number of "instantaneous frequencies". So the answer is any or all. Or for a DFT, you may end up with N non-zero frequencies, one for each bin.



But if there is a clear peak in a DFT, say 10X bigger than the rest of the spectrum combined, then the waveform might look enough like a perfect sine wave (if you squint) that one can procedurally ignore everything except that magnitude peak and assume only one "instantaneous frequency". Or, conversely, one might determine a local periodicity via autocorrelation/amdf/asdf/cepstrum/etc., and estimate an "instantaneous frequency" based on the reciprocal of this periodicity, even if the fundamental is completely missing from the spectrum (e.g. signal looks nothing like a sine wave at that frequency).






share|improve this answer











$endgroup$



You may be confusing multiple terms, which are loosely related, but do not describe exactly the same thing.



Fourier frequencies are a mathematical decomposition, which may have little to do with the primary features of a periodicity, such as a physical vibration or a musical pitch. e.g. A pitch can have a missing fundamental in its Fourier spectrum.



Instantaneous frequency is a characteristic of pure theoretically perfect sine waves (or complex exponentials). Infinitely long perfect sine waves do not exist "in real life" (e.g. the universe seems to be finite in origin time, total energy, and quantized). Actual narrow-band signals are only approximated by these theoretical perfect sine waves, thus instantaneous frequency is only an estimate of an approximation, which depends on how closely the signal approximates some theoretically perfect sine wave over some non-zero interval. (choose your interval and your error tolerance.)



If you look at the Fourier decomposition, then any real signal ends up with an infinite number of "instantaneous frequencies". So the answer is any or all. Or for a DFT, you may end up with N non-zero frequencies, one for each bin.



But if there is a clear peak in a DFT, say 10X bigger than the rest of the spectrum combined, then the waveform might look enough like a perfect sine wave (if you squint) that one can procedurally ignore everything except that magnitude peak and assume only one "instantaneous frequency". Or, conversely, one might determine a local periodicity via autocorrelation/amdf/asdf/cepstrum/etc., and estimate an "instantaneous frequency" based on the reciprocal of this periodicity, even if the fundamental is completely missing from the spectrum (e.g. signal looks nothing like a sine wave at that frequency).







share|improve this answer














share|improve this answer



share|improve this answer








edited Apr 18 at 20:49

























answered Apr 18 at 18:43









hotpaw2hotpaw2

26.2k53472




26.2k53472











  • $begingroup$
    Thank you too very much for your answer, you both contributed to make the concept more clear (and yes I was referring to ideal periodic waves)! Unfortunately, I can choose only one best answer and I chose the chronologically first answer posted, but I'd give it to both if I could because both of you were very helpful with addressing issues with terms I used. Thanks again!
    $endgroup$
    – Maurizio Carcassona
    Apr 22 at 19:25
















  • $begingroup$
    Thank you too very much for your answer, you both contributed to make the concept more clear (and yes I was referring to ideal periodic waves)! Unfortunately, I can choose only one best answer and I chose the chronologically first answer posted, but I'd give it to both if I could because both of you were very helpful with addressing issues with terms I used. Thanks again!
    $endgroup$
    – Maurizio Carcassona
    Apr 22 at 19:25















$begingroup$
Thank you too very much for your answer, you both contributed to make the concept more clear (and yes I was referring to ideal periodic waves)! Unfortunately, I can choose only one best answer and I chose the chronologically first answer posted, but I'd give it to both if I could because both of you were very helpful with addressing issues with terms I used. Thanks again!
$endgroup$
– Maurizio Carcassona
Apr 22 at 19:25




$begingroup$
Thank you too very much for your answer, you both contributed to make the concept more clear (and yes I was referring to ideal periodic waves)! Unfortunately, I can choose only one best answer and I chose the chronologically first answer posted, but I'd give it to both if I could because both of you were very helpful with addressing issues with terms I used. Thanks again!
$endgroup$
– Maurizio Carcassona
Apr 22 at 19:25

















draft saved

draft discarded
















































Thanks for contributing an answer to Signal Processing Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f56781%2fdo-fourier-frequencies-actually-exist-in-real-life-in-form-of-fundamental-frequ%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020