Doomsday-clock for my fantasy planet The 2019 Stack Overflow Developer Survey Results Are In Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara The network's official Twitter account is up and running again. What content…Life on a planet with multiple gas layersWould a horseshoe orbit planet be able to travel to their partner planet?Eventually, can the human race achieve omniscience?Realistic fantasy slimesHow to weigh a flatlander in 2D gravity?Let's evolve whales and dolphins back onto landChanges to Human Anatomy In High Gravity Through EvolutionA Tiktaalik for PlacodermsHow long does it take for islands to form after an underwater volcanic eruption?How to prevent a fantasy world response to repeated near extinction events?

Why are PDP-7-style microprogrammed instructions out of vogue?

Intergalactic human space ship encounters another ship, character gets shunted off beyond known universe, reality starts collapsing

Huge performance difference of the command find with and without using %M option to show permissions

Can I visit the Trinity College (Cambridge) library and see some of their rare books

Can we generate random numbers using irrational numbers like π and e?

Why can't devices on different VLANs, but on the same subnet, communicate?

What's the point in a preamp?

Match Roman Numerals

How to determine omitted units in a publication

Can each chord in a progression create its own key?

Fixing different display colors within string

"... to apply for a visa" or "... and applied for a visa"?

Why can I use a list index as an indexing variable in a for loop?

How to support a colleague who finds meetings extremely tiring?

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

Nested ellipses in tikzpicture: Chomsky hierarchy

What is the padding with red substance inside of steak packaging?

Homework question about an engine pulling a train

how can a perfect fourth interval be considered either consonant or dissonant?

What can I do if neighbor is blocking my solar panels intentionally?

Why can't wing-mounted spoilers be used to steepen approaches?

ELI5: Why do they say that Israel would have been the fourth country to land a spacecraft on the Moon and why do they call it low cost?

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Would an alien lifeform be able to achieve space travel if lacking in vision?



Doomsday-clock for my fantasy planet



The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar Manara
The network's official Twitter account is up and running again. What content…Life on a planet with multiple gas layersWould a horseshoe orbit planet be able to travel to their partner planet?Eventually, can the human race achieve omniscience?Realistic fantasy slimesHow to weigh a flatlander in 2D gravity?Let's evolve whales and dolphins back onto landChanges to Human Anatomy In High Gravity Through EvolutionA Tiktaalik for PlacodermsHow long does it take for islands to form after an underwater volcanic eruption?How to prevent a fantasy world response to repeated near extinction events?










17












$begingroup$


I want the surface of my fantasy planet to be made hostile every few thousand years for long enough to make every species go extinct that breeds on land. The easiest explanation seems to be other planets' gravitation, causing every volcano to erupt at the same time when everything is in a certain constellation. Ash will cover the sun and everything freezes for some time.



What size, distance, and constellation would the planets have to be to support such a system?



Hello again. My English isn't that great. That's why I didn't want to make the description too long. Here I go anyway:



With "extinction" I meant that they wouldn't be able to breed on land in this period of time. Many creatures are amphibian, others are hardly considered "living" in the first place and then there are some species that have second DNA which can survive for a long time and then recreate the old species. There are also creatures that live and hunt in underground caves. They come to the surface when the climate changes and "make sure" that nothing stays the same.



A human-like species has to rediscover scripture and can find relics from old civilisations...










share|improve this question









New contributor




anothernewnamehaha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Welcome to worldbuilding. I have the impression that there are too many loose ends in the question, and as such it is too broad for our standards. Please take the tour and visit the help center to better understand what we expect in a question.
    $endgroup$
    – L.Dutch
    Apr 8 at 7:31






  • 2




    $begingroup$
    You don't have to write "Edit:" when you edit your post - the post tells us at the bottom, and we can review the revisions
    $endgroup$
    – Chronocidal
    Apr 8 at 8:01






  • 18




    $begingroup$
    A few thousand years does not seem enough to get an species to evolve to breed on land.
    $endgroup$
    – SJuan76
    Apr 8 at 8:45






  • 3




    $begingroup$
    with only a few thousand years between events this planet will not have any species that breed on land. They will not have much variety to marine life either. Even if it happened every few million years you would not have species that breed on land.
    $endgroup$
    – John
    Apr 8 at 16:12







  • 1




    $begingroup$
    Size, distance, and constellation do not matter. All you need is humans.
    $endgroup$
    – gerrit
    Apr 9 at 9:03















17












$begingroup$


I want the surface of my fantasy planet to be made hostile every few thousand years for long enough to make every species go extinct that breeds on land. The easiest explanation seems to be other planets' gravitation, causing every volcano to erupt at the same time when everything is in a certain constellation. Ash will cover the sun and everything freezes for some time.



What size, distance, and constellation would the planets have to be to support such a system?



Hello again. My English isn't that great. That's why I didn't want to make the description too long. Here I go anyway:



With "extinction" I meant that they wouldn't be able to breed on land in this period of time. Many creatures are amphibian, others are hardly considered "living" in the first place and then there are some species that have second DNA which can survive for a long time and then recreate the old species. There are also creatures that live and hunt in underground caves. They come to the surface when the climate changes and "make sure" that nothing stays the same.



A human-like species has to rediscover scripture and can find relics from old civilisations...










share|improve this question









New contributor




anothernewnamehaha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Welcome to worldbuilding. I have the impression that there are too many loose ends in the question, and as such it is too broad for our standards. Please take the tour and visit the help center to better understand what we expect in a question.
    $endgroup$
    – L.Dutch
    Apr 8 at 7:31






  • 2




    $begingroup$
    You don't have to write "Edit:" when you edit your post - the post tells us at the bottom, and we can review the revisions
    $endgroup$
    – Chronocidal
    Apr 8 at 8:01






  • 18




    $begingroup$
    A few thousand years does not seem enough to get an species to evolve to breed on land.
    $endgroup$
    – SJuan76
    Apr 8 at 8:45






  • 3




    $begingroup$
    with only a few thousand years between events this planet will not have any species that breed on land. They will not have much variety to marine life either. Even if it happened every few million years you would not have species that breed on land.
    $endgroup$
    – John
    Apr 8 at 16:12







  • 1




    $begingroup$
    Size, distance, and constellation do not matter. All you need is humans.
    $endgroup$
    – gerrit
    Apr 9 at 9:03













17












17








17


2



$begingroup$


I want the surface of my fantasy planet to be made hostile every few thousand years for long enough to make every species go extinct that breeds on land. The easiest explanation seems to be other planets' gravitation, causing every volcano to erupt at the same time when everything is in a certain constellation. Ash will cover the sun and everything freezes for some time.



What size, distance, and constellation would the planets have to be to support such a system?



Hello again. My English isn't that great. That's why I didn't want to make the description too long. Here I go anyway:



With "extinction" I meant that they wouldn't be able to breed on land in this period of time. Many creatures are amphibian, others are hardly considered "living" in the first place and then there are some species that have second DNA which can survive for a long time and then recreate the old species. There are also creatures that live and hunt in underground caves. They come to the surface when the climate changes and "make sure" that nothing stays the same.



A human-like species has to rediscover scripture and can find relics from old civilisations...










share|improve this question









New contributor




anothernewnamehaha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I want the surface of my fantasy planet to be made hostile every few thousand years for long enough to make every species go extinct that breeds on land. The easiest explanation seems to be other planets' gravitation, causing every volcano to erupt at the same time when everything is in a certain constellation. Ash will cover the sun and everything freezes for some time.



What size, distance, and constellation would the planets have to be to support such a system?



Hello again. My English isn't that great. That's why I didn't want to make the description too long. Here I go anyway:



With "extinction" I meant that they wouldn't be able to breed on land in this period of time. Many creatures are amphibian, others are hardly considered "living" in the first place and then there are some species that have second DNA which can survive for a long time and then recreate the old species. There are also creatures that live and hunt in underground caves. They come to the surface when the climate changes and "make sure" that nothing stays the same.



A human-like species has to rediscover scripture and can find relics from old civilisations...







science-based physics gravity extinction






share|improve this question









New contributor




anothernewnamehaha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




anothernewnamehaha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited Apr 9 at 12:01









Kami

257513




257513






New contributor




anothernewnamehaha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Apr 8 at 7:13









anothernewnamehahaanothernewnamehaha

8817




8817




New contributor




anothernewnamehaha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





anothernewnamehaha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






anothernewnamehaha is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Welcome to worldbuilding. I have the impression that there are too many loose ends in the question, and as such it is too broad for our standards. Please take the tour and visit the help center to better understand what we expect in a question.
    $endgroup$
    – L.Dutch
    Apr 8 at 7:31






  • 2




    $begingroup$
    You don't have to write "Edit:" when you edit your post - the post tells us at the bottom, and we can review the revisions
    $endgroup$
    – Chronocidal
    Apr 8 at 8:01






  • 18




    $begingroup$
    A few thousand years does not seem enough to get an species to evolve to breed on land.
    $endgroup$
    – SJuan76
    Apr 8 at 8:45






  • 3




    $begingroup$
    with only a few thousand years between events this planet will not have any species that breed on land. They will not have much variety to marine life either. Even if it happened every few million years you would not have species that breed on land.
    $endgroup$
    – John
    Apr 8 at 16:12







  • 1




    $begingroup$
    Size, distance, and constellation do not matter. All you need is humans.
    $endgroup$
    – gerrit
    Apr 9 at 9:03
















  • $begingroup$
    Welcome to worldbuilding. I have the impression that there are too many loose ends in the question, and as such it is too broad for our standards. Please take the tour and visit the help center to better understand what we expect in a question.
    $endgroup$
    – L.Dutch
    Apr 8 at 7:31






  • 2




    $begingroup$
    You don't have to write "Edit:" when you edit your post - the post tells us at the bottom, and we can review the revisions
    $endgroup$
    – Chronocidal
    Apr 8 at 8:01






  • 18




    $begingroup$
    A few thousand years does not seem enough to get an species to evolve to breed on land.
    $endgroup$
    – SJuan76
    Apr 8 at 8:45






  • 3




    $begingroup$
    with only a few thousand years between events this planet will not have any species that breed on land. They will not have much variety to marine life either. Even if it happened every few million years you would not have species that breed on land.
    $endgroup$
    – John
    Apr 8 at 16:12







  • 1




    $begingroup$
    Size, distance, and constellation do not matter. All you need is humans.
    $endgroup$
    – gerrit
    Apr 9 at 9:03















$begingroup$
Welcome to worldbuilding. I have the impression that there are too many loose ends in the question, and as such it is too broad for our standards. Please take the tour and visit the help center to better understand what we expect in a question.
$endgroup$
– L.Dutch
Apr 8 at 7:31




$begingroup$
Welcome to worldbuilding. I have the impression that there are too many loose ends in the question, and as such it is too broad for our standards. Please take the tour and visit the help center to better understand what we expect in a question.
$endgroup$
– L.Dutch
Apr 8 at 7:31




2




2




$begingroup$
You don't have to write "Edit:" when you edit your post - the post tells us at the bottom, and we can review the revisions
$endgroup$
– Chronocidal
Apr 8 at 8:01




$begingroup$
You don't have to write "Edit:" when you edit your post - the post tells us at the bottom, and we can review the revisions
$endgroup$
– Chronocidal
Apr 8 at 8:01




18




18




$begingroup$
A few thousand years does not seem enough to get an species to evolve to breed on land.
$endgroup$
– SJuan76
Apr 8 at 8:45




$begingroup$
A few thousand years does not seem enough to get an species to evolve to breed on land.
$endgroup$
– SJuan76
Apr 8 at 8:45




3




3




$begingroup$
with only a few thousand years between events this planet will not have any species that breed on land. They will not have much variety to marine life either. Even if it happened every few million years you would not have species that breed on land.
$endgroup$
– John
Apr 8 at 16:12





$begingroup$
with only a few thousand years between events this planet will not have any species that breed on land. They will not have much variety to marine life either. Even if it happened every few million years you would not have species that breed on land.
$endgroup$
– John
Apr 8 at 16:12





1




1




$begingroup$
Size, distance, and constellation do not matter. All you need is humans.
$endgroup$
– gerrit
Apr 9 at 9:03




$begingroup$
Size, distance, and constellation do not matter. All you need is humans.
$endgroup$
– gerrit
Apr 9 at 9:03










6 Answers
6






active

oldest

votes


















27












$begingroup$

Your assumption is reasonable, as Tidal Heating is the reason that Io is the most geologically active body in our Solar System. Although, a problem with using Tidal heating is that the energy is drawn from the gravitational energy, so - without additional planets involved - your system will eventually decay into circular orbits and no longer produce the heating. But, that can be somewhat mitigated with other massive objects in the system to 'kick' your planets back into an elliptical orbit



Since you want this to be a long process, I would suggest looking at Neptune and Pluto, which periodically swap order - for example, from 1979 to 1999, Neptune was actually farther from the sun than Pluto. ("My very efficient memory just stores up planets nine") Pluto takes 248 years to complete an orbit, and Neptune takes 165 years, so they reach the closest point in a cycle of about 495 years



Because these are sufficiently separated vertically, then can never get closer to each other than 8AU (1AU is the distance from Earth to the Sun) - however, your planets can get closer than that. Also, when 1 planet is at one of the intersection points, the other planet may be elsewhere in its orbit.



All you need is that every 20,000 years the planets both reach the intersection point at about the same time, and pass close enough to stress each other. To magnify the effects, your inhabited planet is probably the smaller of the pair. When stretched and squished, then this means:



  • The interior of the planet is heated up, providing plenty of magma for volcanos

  • The crust of the planet is put under strain, providing plenty of opportunities for earthquakes, and resulting tsunamis

In terms of stability? Both the Jupiter-Io and the Neptune-Pluto systems are stable. You will need other planets in the system to help, but with only 1 interaction every 20,000 years this does not need a massive amount of help.






share|improve this answer











$endgroup$












  • $begingroup$
    Thanks! You've helped a lot.
    $endgroup$
    – anothernewnamehaha
    Apr 8 at 8:23






  • 8




    $begingroup$
    @anothernewnamehaha Thanks, but bear in mind that on Worlbuilding, it is typical to wait at least 24 hours before accepting an answer, to allow people from all time-zones to answer - there could be an astrophysicist about to wake up who would give the perfect answer if this wasn't already marked as "answered"... ^_^'
    $endgroup$
    – Chronocidal
    Apr 8 at 8:28










  • $begingroup$
    The cycle where Pluto is closer to the Sun than Neptune isn't 495 years long. Pluto's perihelion is closer than Neptune's, so Pluto winds up closer to the sun on every solar orbit, or about every 248 years. 495 years seems more like the synodic period of the 2:3 resonance between Neptune and Pluto's orbital periods.
    $endgroup$
    – notovny
    Apr 8 at 13:01










  • $begingroup$
    20,000 years is a short period in a solar system's lifespan. . . That is 100 thousand encounters over a 2 billion year period. I cannot believe that will be stable.
    $endgroup$
    – Yakk
    Apr 8 at 13:27







  • 1




    $begingroup$
    For a longer time between occurrences, substitute a dwarf planet with a hefty comet which only comes by every however many thousands of years you require.
    $endgroup$
    – Steve Matthews
    Apr 9 at 12:30


















9












$begingroup$

Another planet seems unlikely, given the time frame. Even Pluto's orbit is 'only' about 500 years, a far cry from 20.000. Also, it would not explain why the hostile period is only a thousand years.


Ice ages might be a better solution, though ice ages on Earth have lasted from ca. 50,000 years up to a hundred million years. Nor are they very regular.



Poul Anderson's 1974 novel Fire Time has a planet that experiences a period of extreme heat every thousand years due to the planet's irregular orbit around three suns. This might be tweaked to suit your needs.



Perhaps the best fit might be if is your planet and its sun is in a very eccentric orbit around a far larger sun, or possibly a black hole with a accretion disk emitting hard radiation. A characteristic of eccentric orbits is that most of the time, the orbiting object is far away from the larger object it orbits and spends a relatively short time whizzing close past that object before returning to a farther distance. An example is the comet Ikeya-Seki, which has an eccentricity very close to 1 (which is the limit for orbiting objects). Its aphelion (furthest distance from the sun) is roughly 200 times that of the Earth, but when it last came closest, it came within 450,000 km of the sun's surface - not much more than the distance between the Earth and the Moon. Its orbital period is roughly a million years. This is far more extreme than what you need, but shows that it is possible.



Finally, since your planet is a fantasy planet, there might be a fantasy explanation. It may be that the dragons breed every 20,000 years and get a bit rowdy during that time. Or there may be a bit more exotic explanation like in the Earthdawn role-playing game, which has a recurring Time of Horrors.






share|improve this answer









$endgroup$












  • $begingroup$
    Thanks for your ideas. The time it takes to orbit is a problem, yes. I call it a fantasy planet because I can't explain everything that's on it. It should be rather realistic...
    $endgroup$
    – anothernewnamehaha
    Apr 8 at 8:59







  • 1




    $begingroup$
    The idea of your sun & planet eccentrically orbiting a black hole should be able to give you the orbit time you require. You can tweak eccentricity, distance, and black hole mass until you find a suitable solution.
    $endgroup$
    – Klaus Æ. Mogensen
    Apr 8 at 9:32






  • 1




    $begingroup$
    Another option could be that the sun is orbited by a much smaller sun on a very excentric orbit. The second sun enters the inner solar system every few thousand years (like a periodic comet) and causes a lot of heat.
    $endgroup$
    – Philipp
    Apr 8 at 14:37










  • $begingroup$
    If Planet 9 exists, it's predicted it's orbital period will be ~ 18,000 years and it's orbit will be highly eccentric, meaning that most of those 18,000 years it will be out of sight. en.wikipedia.org/wiki/Planet_Nine
    $endgroup$
    – ventsyv
    Apr 9 at 13:13


















6












$begingroup$

I am slightly skeptical that you could have a stable system involving a doomsday planet that comes close enough to cause tidal heating without seriously disrupting the orbit of both planets after the first pass. Its the sort of thing that might cause any moons of your inhabited world to leave for somewhere more gravitationally friendly.



Now, I am no orbital mechanic, but I think that a more plausible means of periodic catastrophes are meteorite showers. One source might be gas giant planets in the outer solar system having an orbital resonance that periodically disrupts the local equivalent of the asteroid or Kuiper belt, flinging a bunch of comets and asteroids into the inner solar system some of which end up falling onto your unfortunate world.



Big asteroid impacts are obviously Quite Bad in themselves, but they are also linked to major volcanic events too, if that's important to you.






share|improve this answer









$endgroup$




















    2












    $begingroup$

    Biological Infestation



    Have you read the Pern books by Anne McCaffrey? The series is science fiction, though much of it is indistinguishable from fantasy, as it's a colonial world that has regressed technologically and depends on fire breathing 'dragons'.



    One of the major environmental issues in the Pern books is an organism called Thread, which floats onto the planet every time a rogue planet, with a highly elliptical orbit, passes near Pern. The Thread organisms consume pretty much anything organic they touch.



    Obviously you wouldn't want to directly copy this, but it could be a good jump start on thinking about other ideas.






    share|improve this answer









    $endgroup$








    • 1




      $begingroup$
      “Camelot 30K” also has a novel mechanism of periodic destruction which cleverly solves the “needs to be long enough for evolution to occur” problem.
      $endgroup$
      – John Hascall
      Apr 8 at 22:15


















    0












    $begingroup$

    While I'm inclined to favor the orbit-involves-something-nasty answers (note that the nasty object could also be a fast-spinning neutron star, the jets can be powerful) you've got a far bigger problem here:



    After you have wiped out the land breeders the first time there will be no more land breeders. Your period between encounters is nowhere near enough for new land breeders to evolve.






    share|improve this answer









    $endgroup$




















      0












      $begingroup$

      If you want to have a repeatable pattern occuring every few thousand years I would suggest a biological reason rather than geological/astronomical. This way you can explain that the cycle is a part of a wider pattern in the ecosystem which lets you imagine more complex situations than just "boom! everything is destroyed! start to grow legs again, you stupid fish!" ;)



      We are used to think that ecosystems are stable, but that's only because we have a very limited timeframe. Even though we know that there was a very different climate just twenty thousand years ago (and that now climate changes are even faster), our intuition tells us that summers and winters should be similar each year and nothing is really changing unless there is some kind of a catastrophic event. But that's only because our lifespan is 100 years tops. The ecosystem works on grander scale and doesn't need any meteorites or global volcano eruptions to go through different phases. It is also possible that there are intervals of short rapid changes followed by a long time of considerably more stable situation.



      I would start with the assumption that the most complex life on the planet is amphibian or that all species which resemble mammals and birds are capable of spending their whole lives on water if ground is too hostile. When the conditions on ground improve, those species are able to quickly colonize the new ecological niche. But since a few thousand years is not enough for evolution, all those species will be dependent on water: so no complex animals in steppes, deserts, mountain plateaus, etc. That part of the world is left for a very different ecosystem, one composed of plants and animals which are smaller, simpler, but because of that they can multiply and spread very quickly when they reach certain "critical mass".
      Think of it as a biological version of a nuclear bomb. We start with a very desolate place, a desert far from water. There are some species of plants and animals there, but they're rare and live in a fragile balance: plants grow, herbivores eat them, carnivores eat herbivores, less herbivores mean more place for plants to grow, but also carnivores starve, and this small cycle of small organisms (bugs? insects? miniature tentacle monsters from hell) repeats itself. But this is not really a balance. Every cycle the average population grows a little. And with bigger population, every cycle is a little bit more violent. At some point we reach the critical mass and everything goes boom - in the biological sense. The plants of this strange violent ecosystem spread rapidly around the globe. Herbivores follow, but eating not only the plants they know, but also one which survived in the waters and only recently started to colonize the shores. Carnivores follow, but hunting not only herbivores they know, but all the complex animal life which survived the last cataclysm living in the sea. The only way for the complex ecosystem to survive is to hide in the sea again: the miniature tentacle monsters (*) cannot be stopped. But when they finally eat everything in their way, they die of starvation. And since the cycle was so violent this time, only a very small number of the species form their ecosystem survive - somewhere far away from the shores, on the desert, starting a new small cycle within a bigger cycle which takes thousands of years.



      *) I think it's too easy to think of them as a swarm of insects. I'd invite you to imagine something different.






      share|improve this answer









      $endgroup$












      • $begingroup$
        sounds interesting. thanks.
        $endgroup$
        – anothernewnamehaha
        Apr 9 at 14:53










      • $begingroup$
        You could also click the arrow up, you know ;)
        $endgroup$
        – makingthematrix
        2 days ago











      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "579"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      anothernewnamehaha is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f143479%2fdoomsday-clock-for-my-fantasy-planet%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      6 Answers
      6






      active

      oldest

      votes








      6 Answers
      6






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      27












      $begingroup$

      Your assumption is reasonable, as Tidal Heating is the reason that Io is the most geologically active body in our Solar System. Although, a problem with using Tidal heating is that the energy is drawn from the gravitational energy, so - without additional planets involved - your system will eventually decay into circular orbits and no longer produce the heating. But, that can be somewhat mitigated with other massive objects in the system to 'kick' your planets back into an elliptical orbit



      Since you want this to be a long process, I would suggest looking at Neptune and Pluto, which periodically swap order - for example, from 1979 to 1999, Neptune was actually farther from the sun than Pluto. ("My very efficient memory just stores up planets nine") Pluto takes 248 years to complete an orbit, and Neptune takes 165 years, so they reach the closest point in a cycle of about 495 years



      Because these are sufficiently separated vertically, then can never get closer to each other than 8AU (1AU is the distance from Earth to the Sun) - however, your planets can get closer than that. Also, when 1 planet is at one of the intersection points, the other planet may be elsewhere in its orbit.



      All you need is that every 20,000 years the planets both reach the intersection point at about the same time, and pass close enough to stress each other. To magnify the effects, your inhabited planet is probably the smaller of the pair. When stretched and squished, then this means:



      • The interior of the planet is heated up, providing plenty of magma for volcanos

      • The crust of the planet is put under strain, providing plenty of opportunities for earthquakes, and resulting tsunamis

      In terms of stability? Both the Jupiter-Io and the Neptune-Pluto systems are stable. You will need other planets in the system to help, but with only 1 interaction every 20,000 years this does not need a massive amount of help.






      share|improve this answer











      $endgroup$












      • $begingroup$
        Thanks! You've helped a lot.
        $endgroup$
        – anothernewnamehaha
        Apr 8 at 8:23






      • 8




        $begingroup$
        @anothernewnamehaha Thanks, but bear in mind that on Worlbuilding, it is typical to wait at least 24 hours before accepting an answer, to allow people from all time-zones to answer - there could be an astrophysicist about to wake up who would give the perfect answer if this wasn't already marked as "answered"... ^_^'
        $endgroup$
        – Chronocidal
        Apr 8 at 8:28










      • $begingroup$
        The cycle where Pluto is closer to the Sun than Neptune isn't 495 years long. Pluto's perihelion is closer than Neptune's, so Pluto winds up closer to the sun on every solar orbit, or about every 248 years. 495 years seems more like the synodic period of the 2:3 resonance between Neptune and Pluto's orbital periods.
        $endgroup$
        – notovny
        Apr 8 at 13:01










      • $begingroup$
        20,000 years is a short period in a solar system's lifespan. . . That is 100 thousand encounters over a 2 billion year period. I cannot believe that will be stable.
        $endgroup$
        – Yakk
        Apr 8 at 13:27







      • 1




        $begingroup$
        For a longer time between occurrences, substitute a dwarf planet with a hefty comet which only comes by every however many thousands of years you require.
        $endgroup$
        – Steve Matthews
        Apr 9 at 12:30















      27












      $begingroup$

      Your assumption is reasonable, as Tidal Heating is the reason that Io is the most geologically active body in our Solar System. Although, a problem with using Tidal heating is that the energy is drawn from the gravitational energy, so - without additional planets involved - your system will eventually decay into circular orbits and no longer produce the heating. But, that can be somewhat mitigated with other massive objects in the system to 'kick' your planets back into an elliptical orbit



      Since you want this to be a long process, I would suggest looking at Neptune and Pluto, which periodically swap order - for example, from 1979 to 1999, Neptune was actually farther from the sun than Pluto. ("My very efficient memory just stores up planets nine") Pluto takes 248 years to complete an orbit, and Neptune takes 165 years, so they reach the closest point in a cycle of about 495 years



      Because these are sufficiently separated vertically, then can never get closer to each other than 8AU (1AU is the distance from Earth to the Sun) - however, your planets can get closer than that. Also, when 1 planet is at one of the intersection points, the other planet may be elsewhere in its orbit.



      All you need is that every 20,000 years the planets both reach the intersection point at about the same time, and pass close enough to stress each other. To magnify the effects, your inhabited planet is probably the smaller of the pair. When stretched and squished, then this means:



      • The interior of the planet is heated up, providing plenty of magma for volcanos

      • The crust of the planet is put under strain, providing plenty of opportunities for earthquakes, and resulting tsunamis

      In terms of stability? Both the Jupiter-Io and the Neptune-Pluto systems are stable. You will need other planets in the system to help, but with only 1 interaction every 20,000 years this does not need a massive amount of help.






      share|improve this answer











      $endgroup$












      • $begingroup$
        Thanks! You've helped a lot.
        $endgroup$
        – anothernewnamehaha
        Apr 8 at 8:23






      • 8




        $begingroup$
        @anothernewnamehaha Thanks, but bear in mind that on Worlbuilding, it is typical to wait at least 24 hours before accepting an answer, to allow people from all time-zones to answer - there could be an astrophysicist about to wake up who would give the perfect answer if this wasn't already marked as "answered"... ^_^'
        $endgroup$
        – Chronocidal
        Apr 8 at 8:28










      • $begingroup$
        The cycle where Pluto is closer to the Sun than Neptune isn't 495 years long. Pluto's perihelion is closer than Neptune's, so Pluto winds up closer to the sun on every solar orbit, or about every 248 years. 495 years seems more like the synodic period of the 2:3 resonance between Neptune and Pluto's orbital periods.
        $endgroup$
        – notovny
        Apr 8 at 13:01










      • $begingroup$
        20,000 years is a short period in a solar system's lifespan. . . That is 100 thousand encounters over a 2 billion year period. I cannot believe that will be stable.
        $endgroup$
        – Yakk
        Apr 8 at 13:27







      • 1




        $begingroup$
        For a longer time between occurrences, substitute a dwarf planet with a hefty comet which only comes by every however many thousands of years you require.
        $endgroup$
        – Steve Matthews
        Apr 9 at 12:30













      27












      27








      27





      $begingroup$

      Your assumption is reasonable, as Tidal Heating is the reason that Io is the most geologically active body in our Solar System. Although, a problem with using Tidal heating is that the energy is drawn from the gravitational energy, so - without additional planets involved - your system will eventually decay into circular orbits and no longer produce the heating. But, that can be somewhat mitigated with other massive objects in the system to 'kick' your planets back into an elliptical orbit



      Since you want this to be a long process, I would suggest looking at Neptune and Pluto, which periodically swap order - for example, from 1979 to 1999, Neptune was actually farther from the sun than Pluto. ("My very efficient memory just stores up planets nine") Pluto takes 248 years to complete an orbit, and Neptune takes 165 years, so they reach the closest point in a cycle of about 495 years



      Because these are sufficiently separated vertically, then can never get closer to each other than 8AU (1AU is the distance from Earth to the Sun) - however, your planets can get closer than that. Also, when 1 planet is at one of the intersection points, the other planet may be elsewhere in its orbit.



      All you need is that every 20,000 years the planets both reach the intersection point at about the same time, and pass close enough to stress each other. To magnify the effects, your inhabited planet is probably the smaller of the pair. When stretched and squished, then this means:



      • The interior of the planet is heated up, providing plenty of magma for volcanos

      • The crust of the planet is put under strain, providing plenty of opportunities for earthquakes, and resulting tsunamis

      In terms of stability? Both the Jupiter-Io and the Neptune-Pluto systems are stable. You will need other planets in the system to help, but with only 1 interaction every 20,000 years this does not need a massive amount of help.






      share|improve this answer











      $endgroup$



      Your assumption is reasonable, as Tidal Heating is the reason that Io is the most geologically active body in our Solar System. Although, a problem with using Tidal heating is that the energy is drawn from the gravitational energy, so - without additional planets involved - your system will eventually decay into circular orbits and no longer produce the heating. But, that can be somewhat mitigated with other massive objects in the system to 'kick' your planets back into an elliptical orbit



      Since you want this to be a long process, I would suggest looking at Neptune and Pluto, which periodically swap order - for example, from 1979 to 1999, Neptune was actually farther from the sun than Pluto. ("My very efficient memory just stores up planets nine") Pluto takes 248 years to complete an orbit, and Neptune takes 165 years, so they reach the closest point in a cycle of about 495 years



      Because these are sufficiently separated vertically, then can never get closer to each other than 8AU (1AU is the distance from Earth to the Sun) - however, your planets can get closer than that. Also, when 1 planet is at one of the intersection points, the other planet may be elsewhere in its orbit.



      All you need is that every 20,000 years the planets both reach the intersection point at about the same time, and pass close enough to stress each other. To magnify the effects, your inhabited planet is probably the smaller of the pair. When stretched and squished, then this means:



      • The interior of the planet is heated up, providing plenty of magma for volcanos

      • The crust of the planet is put under strain, providing plenty of opportunities for earthquakes, and resulting tsunamis

      In terms of stability? Both the Jupiter-Io and the Neptune-Pluto systems are stable. You will need other planets in the system to help, but with only 1 interaction every 20,000 years this does not need a massive amount of help.







      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited Apr 8 at 13:46

























      answered Apr 8 at 7:55









      ChronocidalChronocidal

      7,13711035




      7,13711035











      • $begingroup$
        Thanks! You've helped a lot.
        $endgroup$
        – anothernewnamehaha
        Apr 8 at 8:23






      • 8




        $begingroup$
        @anothernewnamehaha Thanks, but bear in mind that on Worlbuilding, it is typical to wait at least 24 hours before accepting an answer, to allow people from all time-zones to answer - there could be an astrophysicist about to wake up who would give the perfect answer if this wasn't already marked as "answered"... ^_^'
        $endgroup$
        – Chronocidal
        Apr 8 at 8:28










      • $begingroup$
        The cycle where Pluto is closer to the Sun than Neptune isn't 495 years long. Pluto's perihelion is closer than Neptune's, so Pluto winds up closer to the sun on every solar orbit, or about every 248 years. 495 years seems more like the synodic period of the 2:3 resonance between Neptune and Pluto's orbital periods.
        $endgroup$
        – notovny
        Apr 8 at 13:01










      • $begingroup$
        20,000 years is a short period in a solar system's lifespan. . . That is 100 thousand encounters over a 2 billion year period. I cannot believe that will be stable.
        $endgroup$
        – Yakk
        Apr 8 at 13:27







      • 1




        $begingroup$
        For a longer time between occurrences, substitute a dwarf planet with a hefty comet which only comes by every however many thousands of years you require.
        $endgroup$
        – Steve Matthews
        Apr 9 at 12:30
















      • $begingroup$
        Thanks! You've helped a lot.
        $endgroup$
        – anothernewnamehaha
        Apr 8 at 8:23






      • 8




        $begingroup$
        @anothernewnamehaha Thanks, but bear in mind that on Worlbuilding, it is typical to wait at least 24 hours before accepting an answer, to allow people from all time-zones to answer - there could be an astrophysicist about to wake up who would give the perfect answer if this wasn't already marked as "answered"... ^_^'
        $endgroup$
        – Chronocidal
        Apr 8 at 8:28










      • $begingroup$
        The cycle where Pluto is closer to the Sun than Neptune isn't 495 years long. Pluto's perihelion is closer than Neptune's, so Pluto winds up closer to the sun on every solar orbit, or about every 248 years. 495 years seems more like the synodic period of the 2:3 resonance between Neptune and Pluto's orbital periods.
        $endgroup$
        – notovny
        Apr 8 at 13:01










      • $begingroup$
        20,000 years is a short period in a solar system's lifespan. . . That is 100 thousand encounters over a 2 billion year period. I cannot believe that will be stable.
        $endgroup$
        – Yakk
        Apr 8 at 13:27







      • 1




        $begingroup$
        For a longer time between occurrences, substitute a dwarf planet with a hefty comet which only comes by every however many thousands of years you require.
        $endgroup$
        – Steve Matthews
        Apr 9 at 12:30















      $begingroup$
      Thanks! You've helped a lot.
      $endgroup$
      – anothernewnamehaha
      Apr 8 at 8:23




      $begingroup$
      Thanks! You've helped a lot.
      $endgroup$
      – anothernewnamehaha
      Apr 8 at 8:23




      8




      8




      $begingroup$
      @anothernewnamehaha Thanks, but bear in mind that on Worlbuilding, it is typical to wait at least 24 hours before accepting an answer, to allow people from all time-zones to answer - there could be an astrophysicist about to wake up who would give the perfect answer if this wasn't already marked as "answered"... ^_^'
      $endgroup$
      – Chronocidal
      Apr 8 at 8:28




      $begingroup$
      @anothernewnamehaha Thanks, but bear in mind that on Worlbuilding, it is typical to wait at least 24 hours before accepting an answer, to allow people from all time-zones to answer - there could be an astrophysicist about to wake up who would give the perfect answer if this wasn't already marked as "answered"... ^_^'
      $endgroup$
      – Chronocidal
      Apr 8 at 8:28












      $begingroup$
      The cycle where Pluto is closer to the Sun than Neptune isn't 495 years long. Pluto's perihelion is closer than Neptune's, so Pluto winds up closer to the sun on every solar orbit, or about every 248 years. 495 years seems more like the synodic period of the 2:3 resonance between Neptune and Pluto's orbital periods.
      $endgroup$
      – notovny
      Apr 8 at 13:01




      $begingroup$
      The cycle where Pluto is closer to the Sun than Neptune isn't 495 years long. Pluto's perihelion is closer than Neptune's, so Pluto winds up closer to the sun on every solar orbit, or about every 248 years. 495 years seems more like the synodic period of the 2:3 resonance between Neptune and Pluto's orbital periods.
      $endgroup$
      – notovny
      Apr 8 at 13:01












      $begingroup$
      20,000 years is a short period in a solar system's lifespan. . . That is 100 thousand encounters over a 2 billion year period. I cannot believe that will be stable.
      $endgroup$
      – Yakk
      Apr 8 at 13:27





      $begingroup$
      20,000 years is a short period in a solar system's lifespan. . . That is 100 thousand encounters over a 2 billion year period. I cannot believe that will be stable.
      $endgroup$
      – Yakk
      Apr 8 at 13:27





      1




      1




      $begingroup$
      For a longer time between occurrences, substitute a dwarf planet with a hefty comet which only comes by every however many thousands of years you require.
      $endgroup$
      – Steve Matthews
      Apr 9 at 12:30




      $begingroup$
      For a longer time between occurrences, substitute a dwarf planet with a hefty comet which only comes by every however many thousands of years you require.
      $endgroup$
      – Steve Matthews
      Apr 9 at 12:30











      9












      $begingroup$

      Another planet seems unlikely, given the time frame. Even Pluto's orbit is 'only' about 500 years, a far cry from 20.000. Also, it would not explain why the hostile period is only a thousand years.


      Ice ages might be a better solution, though ice ages on Earth have lasted from ca. 50,000 years up to a hundred million years. Nor are they very regular.



      Poul Anderson's 1974 novel Fire Time has a planet that experiences a period of extreme heat every thousand years due to the planet's irregular orbit around three suns. This might be tweaked to suit your needs.



      Perhaps the best fit might be if is your planet and its sun is in a very eccentric orbit around a far larger sun, or possibly a black hole with a accretion disk emitting hard radiation. A characteristic of eccentric orbits is that most of the time, the orbiting object is far away from the larger object it orbits and spends a relatively short time whizzing close past that object before returning to a farther distance. An example is the comet Ikeya-Seki, which has an eccentricity very close to 1 (which is the limit for orbiting objects). Its aphelion (furthest distance from the sun) is roughly 200 times that of the Earth, but when it last came closest, it came within 450,000 km of the sun's surface - not much more than the distance between the Earth and the Moon. Its orbital period is roughly a million years. This is far more extreme than what you need, but shows that it is possible.



      Finally, since your planet is a fantasy planet, there might be a fantasy explanation. It may be that the dragons breed every 20,000 years and get a bit rowdy during that time. Or there may be a bit more exotic explanation like in the Earthdawn role-playing game, which has a recurring Time of Horrors.






      share|improve this answer









      $endgroup$












      • $begingroup$
        Thanks for your ideas. The time it takes to orbit is a problem, yes. I call it a fantasy planet because I can't explain everything that's on it. It should be rather realistic...
        $endgroup$
        – anothernewnamehaha
        Apr 8 at 8:59







      • 1




        $begingroup$
        The idea of your sun & planet eccentrically orbiting a black hole should be able to give you the orbit time you require. You can tweak eccentricity, distance, and black hole mass until you find a suitable solution.
        $endgroup$
        – Klaus Æ. Mogensen
        Apr 8 at 9:32






      • 1




        $begingroup$
        Another option could be that the sun is orbited by a much smaller sun on a very excentric orbit. The second sun enters the inner solar system every few thousand years (like a periodic comet) and causes a lot of heat.
        $endgroup$
        – Philipp
        Apr 8 at 14:37










      • $begingroup$
        If Planet 9 exists, it's predicted it's orbital period will be ~ 18,000 years and it's orbit will be highly eccentric, meaning that most of those 18,000 years it will be out of sight. en.wikipedia.org/wiki/Planet_Nine
        $endgroup$
        – ventsyv
        Apr 9 at 13:13















      9












      $begingroup$

      Another planet seems unlikely, given the time frame. Even Pluto's orbit is 'only' about 500 years, a far cry from 20.000. Also, it would not explain why the hostile period is only a thousand years.


      Ice ages might be a better solution, though ice ages on Earth have lasted from ca. 50,000 years up to a hundred million years. Nor are they very regular.



      Poul Anderson's 1974 novel Fire Time has a planet that experiences a period of extreme heat every thousand years due to the planet's irregular orbit around three suns. This might be tweaked to suit your needs.



      Perhaps the best fit might be if is your planet and its sun is in a very eccentric orbit around a far larger sun, or possibly a black hole with a accretion disk emitting hard radiation. A characteristic of eccentric orbits is that most of the time, the orbiting object is far away from the larger object it orbits and spends a relatively short time whizzing close past that object before returning to a farther distance. An example is the comet Ikeya-Seki, which has an eccentricity very close to 1 (which is the limit for orbiting objects). Its aphelion (furthest distance from the sun) is roughly 200 times that of the Earth, but when it last came closest, it came within 450,000 km of the sun's surface - not much more than the distance between the Earth and the Moon. Its orbital period is roughly a million years. This is far more extreme than what you need, but shows that it is possible.



      Finally, since your planet is a fantasy planet, there might be a fantasy explanation. It may be that the dragons breed every 20,000 years and get a bit rowdy during that time. Or there may be a bit more exotic explanation like in the Earthdawn role-playing game, which has a recurring Time of Horrors.






      share|improve this answer









      $endgroup$












      • $begingroup$
        Thanks for your ideas. The time it takes to orbit is a problem, yes. I call it a fantasy planet because I can't explain everything that's on it. It should be rather realistic...
        $endgroup$
        – anothernewnamehaha
        Apr 8 at 8:59







      • 1




        $begingroup$
        The idea of your sun & planet eccentrically orbiting a black hole should be able to give you the orbit time you require. You can tweak eccentricity, distance, and black hole mass until you find a suitable solution.
        $endgroup$
        – Klaus Æ. Mogensen
        Apr 8 at 9:32






      • 1




        $begingroup$
        Another option could be that the sun is orbited by a much smaller sun on a very excentric orbit. The second sun enters the inner solar system every few thousand years (like a periodic comet) and causes a lot of heat.
        $endgroup$
        – Philipp
        Apr 8 at 14:37










      • $begingroup$
        If Planet 9 exists, it's predicted it's orbital period will be ~ 18,000 years and it's orbit will be highly eccentric, meaning that most of those 18,000 years it will be out of sight. en.wikipedia.org/wiki/Planet_Nine
        $endgroup$
        – ventsyv
        Apr 9 at 13:13













      9












      9








      9





      $begingroup$

      Another planet seems unlikely, given the time frame. Even Pluto's orbit is 'only' about 500 years, a far cry from 20.000. Also, it would not explain why the hostile period is only a thousand years.


      Ice ages might be a better solution, though ice ages on Earth have lasted from ca. 50,000 years up to a hundred million years. Nor are they very regular.



      Poul Anderson's 1974 novel Fire Time has a planet that experiences a period of extreme heat every thousand years due to the planet's irregular orbit around three suns. This might be tweaked to suit your needs.



      Perhaps the best fit might be if is your planet and its sun is in a very eccentric orbit around a far larger sun, or possibly a black hole with a accretion disk emitting hard radiation. A characteristic of eccentric orbits is that most of the time, the orbiting object is far away from the larger object it orbits and spends a relatively short time whizzing close past that object before returning to a farther distance. An example is the comet Ikeya-Seki, which has an eccentricity very close to 1 (which is the limit for orbiting objects). Its aphelion (furthest distance from the sun) is roughly 200 times that of the Earth, but when it last came closest, it came within 450,000 km of the sun's surface - not much more than the distance between the Earth and the Moon. Its orbital period is roughly a million years. This is far more extreme than what you need, but shows that it is possible.



      Finally, since your planet is a fantasy planet, there might be a fantasy explanation. It may be that the dragons breed every 20,000 years and get a bit rowdy during that time. Or there may be a bit more exotic explanation like in the Earthdawn role-playing game, which has a recurring Time of Horrors.






      share|improve this answer









      $endgroup$



      Another planet seems unlikely, given the time frame. Even Pluto's orbit is 'only' about 500 years, a far cry from 20.000. Also, it would not explain why the hostile period is only a thousand years.


      Ice ages might be a better solution, though ice ages on Earth have lasted from ca. 50,000 years up to a hundred million years. Nor are they very regular.



      Poul Anderson's 1974 novel Fire Time has a planet that experiences a period of extreme heat every thousand years due to the planet's irregular orbit around three suns. This might be tweaked to suit your needs.



      Perhaps the best fit might be if is your planet and its sun is in a very eccentric orbit around a far larger sun, or possibly a black hole with a accretion disk emitting hard radiation. A characteristic of eccentric orbits is that most of the time, the orbiting object is far away from the larger object it orbits and spends a relatively short time whizzing close past that object before returning to a farther distance. An example is the comet Ikeya-Seki, which has an eccentricity very close to 1 (which is the limit for orbiting objects). Its aphelion (furthest distance from the sun) is roughly 200 times that of the Earth, but when it last came closest, it came within 450,000 km of the sun's surface - not much more than the distance between the Earth and the Moon. Its orbital period is roughly a million years. This is far more extreme than what you need, but shows that it is possible.



      Finally, since your planet is a fantasy planet, there might be a fantasy explanation. It may be that the dragons breed every 20,000 years and get a bit rowdy during that time. Or there may be a bit more exotic explanation like in the Earthdawn role-playing game, which has a recurring Time of Horrors.







      share|improve this answer












      share|improve this answer



      share|improve this answer










      answered Apr 8 at 7:59









      Klaus Æ. MogensenKlaus Æ. Mogensen

      1,223138




      1,223138











      • $begingroup$
        Thanks for your ideas. The time it takes to orbit is a problem, yes. I call it a fantasy planet because I can't explain everything that's on it. It should be rather realistic...
        $endgroup$
        – anothernewnamehaha
        Apr 8 at 8:59







      • 1




        $begingroup$
        The idea of your sun & planet eccentrically orbiting a black hole should be able to give you the orbit time you require. You can tweak eccentricity, distance, and black hole mass until you find a suitable solution.
        $endgroup$
        – Klaus Æ. Mogensen
        Apr 8 at 9:32






      • 1




        $begingroup$
        Another option could be that the sun is orbited by a much smaller sun on a very excentric orbit. The second sun enters the inner solar system every few thousand years (like a periodic comet) and causes a lot of heat.
        $endgroup$
        – Philipp
        Apr 8 at 14:37










      • $begingroup$
        If Planet 9 exists, it's predicted it's orbital period will be ~ 18,000 years and it's orbit will be highly eccentric, meaning that most of those 18,000 years it will be out of sight. en.wikipedia.org/wiki/Planet_Nine
        $endgroup$
        – ventsyv
        Apr 9 at 13:13
















      • $begingroup$
        Thanks for your ideas. The time it takes to orbit is a problem, yes. I call it a fantasy planet because I can't explain everything that's on it. It should be rather realistic...
        $endgroup$
        – anothernewnamehaha
        Apr 8 at 8:59







      • 1




        $begingroup$
        The idea of your sun & planet eccentrically orbiting a black hole should be able to give you the orbit time you require. You can tweak eccentricity, distance, and black hole mass until you find a suitable solution.
        $endgroup$
        – Klaus Æ. Mogensen
        Apr 8 at 9:32






      • 1




        $begingroup$
        Another option could be that the sun is orbited by a much smaller sun on a very excentric orbit. The second sun enters the inner solar system every few thousand years (like a periodic comet) and causes a lot of heat.
        $endgroup$
        – Philipp
        Apr 8 at 14:37










      • $begingroup$
        If Planet 9 exists, it's predicted it's orbital period will be ~ 18,000 years and it's orbit will be highly eccentric, meaning that most of those 18,000 years it will be out of sight. en.wikipedia.org/wiki/Planet_Nine
        $endgroup$
        – ventsyv
        Apr 9 at 13:13















      $begingroup$
      Thanks for your ideas. The time it takes to orbit is a problem, yes. I call it a fantasy planet because I can't explain everything that's on it. It should be rather realistic...
      $endgroup$
      – anothernewnamehaha
      Apr 8 at 8:59





      $begingroup$
      Thanks for your ideas. The time it takes to orbit is a problem, yes. I call it a fantasy planet because I can't explain everything that's on it. It should be rather realistic...
      $endgroup$
      – anothernewnamehaha
      Apr 8 at 8:59





      1




      1




      $begingroup$
      The idea of your sun & planet eccentrically orbiting a black hole should be able to give you the orbit time you require. You can tweak eccentricity, distance, and black hole mass until you find a suitable solution.
      $endgroup$
      – Klaus Æ. Mogensen
      Apr 8 at 9:32




      $begingroup$
      The idea of your sun & planet eccentrically orbiting a black hole should be able to give you the orbit time you require. You can tweak eccentricity, distance, and black hole mass until you find a suitable solution.
      $endgroup$
      – Klaus Æ. Mogensen
      Apr 8 at 9:32




      1




      1




      $begingroup$
      Another option could be that the sun is orbited by a much smaller sun on a very excentric orbit. The second sun enters the inner solar system every few thousand years (like a periodic comet) and causes a lot of heat.
      $endgroup$
      – Philipp
      Apr 8 at 14:37




      $begingroup$
      Another option could be that the sun is orbited by a much smaller sun on a very excentric orbit. The second sun enters the inner solar system every few thousand years (like a periodic comet) and causes a lot of heat.
      $endgroup$
      – Philipp
      Apr 8 at 14:37












      $begingroup$
      If Planet 9 exists, it's predicted it's orbital period will be ~ 18,000 years and it's orbit will be highly eccentric, meaning that most of those 18,000 years it will be out of sight. en.wikipedia.org/wiki/Planet_Nine
      $endgroup$
      – ventsyv
      Apr 9 at 13:13




      $begingroup$
      If Planet 9 exists, it's predicted it's orbital period will be ~ 18,000 years and it's orbit will be highly eccentric, meaning that most of those 18,000 years it will be out of sight. en.wikipedia.org/wiki/Planet_Nine
      $endgroup$
      – ventsyv
      Apr 9 at 13:13











      6












      $begingroup$

      I am slightly skeptical that you could have a stable system involving a doomsday planet that comes close enough to cause tidal heating without seriously disrupting the orbit of both planets after the first pass. Its the sort of thing that might cause any moons of your inhabited world to leave for somewhere more gravitationally friendly.



      Now, I am no orbital mechanic, but I think that a more plausible means of periodic catastrophes are meteorite showers. One source might be gas giant planets in the outer solar system having an orbital resonance that periodically disrupts the local equivalent of the asteroid or Kuiper belt, flinging a bunch of comets and asteroids into the inner solar system some of which end up falling onto your unfortunate world.



      Big asteroid impacts are obviously Quite Bad in themselves, but they are also linked to major volcanic events too, if that's important to you.






      share|improve this answer









      $endgroup$

















        6












        $begingroup$

        I am slightly skeptical that you could have a stable system involving a doomsday planet that comes close enough to cause tidal heating without seriously disrupting the orbit of both planets after the first pass. Its the sort of thing that might cause any moons of your inhabited world to leave for somewhere more gravitationally friendly.



        Now, I am no orbital mechanic, but I think that a more plausible means of periodic catastrophes are meteorite showers. One source might be gas giant planets in the outer solar system having an orbital resonance that periodically disrupts the local equivalent of the asteroid or Kuiper belt, flinging a bunch of comets and asteroids into the inner solar system some of which end up falling onto your unfortunate world.



        Big asteroid impacts are obviously Quite Bad in themselves, but they are also linked to major volcanic events too, if that's important to you.






        share|improve this answer









        $endgroup$















          6












          6








          6





          $begingroup$

          I am slightly skeptical that you could have a stable system involving a doomsday planet that comes close enough to cause tidal heating without seriously disrupting the orbit of both planets after the first pass. Its the sort of thing that might cause any moons of your inhabited world to leave for somewhere more gravitationally friendly.



          Now, I am no orbital mechanic, but I think that a more plausible means of periodic catastrophes are meteorite showers. One source might be gas giant planets in the outer solar system having an orbital resonance that periodically disrupts the local equivalent of the asteroid or Kuiper belt, flinging a bunch of comets and asteroids into the inner solar system some of which end up falling onto your unfortunate world.



          Big asteroid impacts are obviously Quite Bad in themselves, but they are also linked to major volcanic events too, if that's important to you.






          share|improve this answer









          $endgroup$



          I am slightly skeptical that you could have a stable system involving a doomsday planet that comes close enough to cause tidal heating without seriously disrupting the orbit of both planets after the first pass. Its the sort of thing that might cause any moons of your inhabited world to leave for somewhere more gravitationally friendly.



          Now, I am no orbital mechanic, but I think that a more plausible means of periodic catastrophes are meteorite showers. One source might be gas giant planets in the outer solar system having an orbital resonance that periodically disrupts the local equivalent of the asteroid or Kuiper belt, flinging a bunch of comets and asteroids into the inner solar system some of which end up falling onto your unfortunate world.



          Big asteroid impacts are obviously Quite Bad in themselves, but they are also linked to major volcanic events too, if that's important to you.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Apr 8 at 9:52









          Starfish PrimeStarfish Prime

          1,299214




          1,299214





















              2












              $begingroup$

              Biological Infestation



              Have you read the Pern books by Anne McCaffrey? The series is science fiction, though much of it is indistinguishable from fantasy, as it's a colonial world that has regressed technologically and depends on fire breathing 'dragons'.



              One of the major environmental issues in the Pern books is an organism called Thread, which floats onto the planet every time a rogue planet, with a highly elliptical orbit, passes near Pern. The Thread organisms consume pretty much anything organic they touch.



              Obviously you wouldn't want to directly copy this, but it could be a good jump start on thinking about other ideas.






              share|improve this answer









              $endgroup$








              • 1




                $begingroup$
                “Camelot 30K” also has a novel mechanism of periodic destruction which cleverly solves the “needs to be long enough for evolution to occur” problem.
                $endgroup$
                – John Hascall
                Apr 8 at 22:15















              2












              $begingroup$

              Biological Infestation



              Have you read the Pern books by Anne McCaffrey? The series is science fiction, though much of it is indistinguishable from fantasy, as it's a colonial world that has regressed technologically and depends on fire breathing 'dragons'.



              One of the major environmental issues in the Pern books is an organism called Thread, which floats onto the planet every time a rogue planet, with a highly elliptical orbit, passes near Pern. The Thread organisms consume pretty much anything organic they touch.



              Obviously you wouldn't want to directly copy this, but it could be a good jump start on thinking about other ideas.






              share|improve this answer









              $endgroup$








              • 1




                $begingroup$
                “Camelot 30K” also has a novel mechanism of periodic destruction which cleverly solves the “needs to be long enough for evolution to occur” problem.
                $endgroup$
                – John Hascall
                Apr 8 at 22:15













              2












              2








              2





              $begingroup$

              Biological Infestation



              Have you read the Pern books by Anne McCaffrey? The series is science fiction, though much of it is indistinguishable from fantasy, as it's a colonial world that has regressed technologically and depends on fire breathing 'dragons'.



              One of the major environmental issues in the Pern books is an organism called Thread, which floats onto the planet every time a rogue planet, with a highly elliptical orbit, passes near Pern. The Thread organisms consume pretty much anything organic they touch.



              Obviously you wouldn't want to directly copy this, but it could be a good jump start on thinking about other ideas.






              share|improve this answer









              $endgroup$



              Biological Infestation



              Have you read the Pern books by Anne McCaffrey? The series is science fiction, though much of it is indistinguishable from fantasy, as it's a colonial world that has regressed technologically and depends on fire breathing 'dragons'.



              One of the major environmental issues in the Pern books is an organism called Thread, which floats onto the planet every time a rogue planet, with a highly elliptical orbit, passes near Pern. The Thread organisms consume pretty much anything organic they touch.



              Obviously you wouldn't want to directly copy this, but it could be a good jump start on thinking about other ideas.







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered Apr 8 at 19:28









              Adam MillerAdam Miller

              1,738716




              1,738716







              • 1




                $begingroup$
                “Camelot 30K” also has a novel mechanism of periodic destruction which cleverly solves the “needs to be long enough for evolution to occur” problem.
                $endgroup$
                – John Hascall
                Apr 8 at 22:15












              • 1




                $begingroup$
                “Camelot 30K” also has a novel mechanism of periodic destruction which cleverly solves the “needs to be long enough for evolution to occur” problem.
                $endgroup$
                – John Hascall
                Apr 8 at 22:15







              1




              1




              $begingroup$
              “Camelot 30K” also has a novel mechanism of periodic destruction which cleverly solves the “needs to be long enough for evolution to occur” problem.
              $endgroup$
              – John Hascall
              Apr 8 at 22:15




              $begingroup$
              “Camelot 30K” also has a novel mechanism of periodic destruction which cleverly solves the “needs to be long enough for evolution to occur” problem.
              $endgroup$
              – John Hascall
              Apr 8 at 22:15











              0












              $begingroup$

              While I'm inclined to favor the orbit-involves-something-nasty answers (note that the nasty object could also be a fast-spinning neutron star, the jets can be powerful) you've got a far bigger problem here:



              After you have wiped out the land breeders the first time there will be no more land breeders. Your period between encounters is nowhere near enough for new land breeders to evolve.






              share|improve this answer









              $endgroup$

















                0












                $begingroup$

                While I'm inclined to favor the orbit-involves-something-nasty answers (note that the nasty object could also be a fast-spinning neutron star, the jets can be powerful) you've got a far bigger problem here:



                After you have wiped out the land breeders the first time there will be no more land breeders. Your period between encounters is nowhere near enough for new land breeders to evolve.






                share|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  While I'm inclined to favor the orbit-involves-something-nasty answers (note that the nasty object could also be a fast-spinning neutron star, the jets can be powerful) you've got a far bigger problem here:



                  After you have wiped out the land breeders the first time there will be no more land breeders. Your period between encounters is nowhere near enough for new land breeders to evolve.






                  share|improve this answer









                  $endgroup$



                  While I'm inclined to favor the orbit-involves-something-nasty answers (note that the nasty object could also be a fast-spinning neutron star, the jets can be powerful) you've got a far bigger problem here:



                  After you have wiped out the land breeders the first time there will be no more land breeders. Your period between encounters is nowhere near enough for new land breeders to evolve.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Apr 8 at 18:38









                  Loren PechtelLoren Pechtel

                  19.9k2262




                  19.9k2262





















                      0












                      $begingroup$

                      If you want to have a repeatable pattern occuring every few thousand years I would suggest a biological reason rather than geological/astronomical. This way you can explain that the cycle is a part of a wider pattern in the ecosystem which lets you imagine more complex situations than just "boom! everything is destroyed! start to grow legs again, you stupid fish!" ;)



                      We are used to think that ecosystems are stable, but that's only because we have a very limited timeframe. Even though we know that there was a very different climate just twenty thousand years ago (and that now climate changes are even faster), our intuition tells us that summers and winters should be similar each year and nothing is really changing unless there is some kind of a catastrophic event. But that's only because our lifespan is 100 years tops. The ecosystem works on grander scale and doesn't need any meteorites or global volcano eruptions to go through different phases. It is also possible that there are intervals of short rapid changes followed by a long time of considerably more stable situation.



                      I would start with the assumption that the most complex life on the planet is amphibian or that all species which resemble mammals and birds are capable of spending their whole lives on water if ground is too hostile. When the conditions on ground improve, those species are able to quickly colonize the new ecological niche. But since a few thousand years is not enough for evolution, all those species will be dependent on water: so no complex animals in steppes, deserts, mountain plateaus, etc. That part of the world is left for a very different ecosystem, one composed of plants and animals which are smaller, simpler, but because of that they can multiply and spread very quickly when they reach certain "critical mass".
                      Think of it as a biological version of a nuclear bomb. We start with a very desolate place, a desert far from water. There are some species of plants and animals there, but they're rare and live in a fragile balance: plants grow, herbivores eat them, carnivores eat herbivores, less herbivores mean more place for plants to grow, but also carnivores starve, and this small cycle of small organisms (bugs? insects? miniature tentacle monsters from hell) repeats itself. But this is not really a balance. Every cycle the average population grows a little. And with bigger population, every cycle is a little bit more violent. At some point we reach the critical mass and everything goes boom - in the biological sense. The plants of this strange violent ecosystem spread rapidly around the globe. Herbivores follow, but eating not only the plants they know, but also one which survived in the waters and only recently started to colonize the shores. Carnivores follow, but hunting not only herbivores they know, but all the complex animal life which survived the last cataclysm living in the sea. The only way for the complex ecosystem to survive is to hide in the sea again: the miniature tentacle monsters (*) cannot be stopped. But when they finally eat everything in their way, they die of starvation. And since the cycle was so violent this time, only a very small number of the species form their ecosystem survive - somewhere far away from the shores, on the desert, starting a new small cycle within a bigger cycle which takes thousands of years.



                      *) I think it's too easy to think of them as a swarm of insects. I'd invite you to imagine something different.






                      share|improve this answer









                      $endgroup$












                      • $begingroup$
                        sounds interesting. thanks.
                        $endgroup$
                        – anothernewnamehaha
                        Apr 9 at 14:53










                      • $begingroup$
                        You could also click the arrow up, you know ;)
                        $endgroup$
                        – makingthematrix
                        2 days ago















                      0












                      $begingroup$

                      If you want to have a repeatable pattern occuring every few thousand years I would suggest a biological reason rather than geological/astronomical. This way you can explain that the cycle is a part of a wider pattern in the ecosystem which lets you imagine more complex situations than just "boom! everything is destroyed! start to grow legs again, you stupid fish!" ;)



                      We are used to think that ecosystems are stable, but that's only because we have a very limited timeframe. Even though we know that there was a very different climate just twenty thousand years ago (and that now climate changes are even faster), our intuition tells us that summers and winters should be similar each year and nothing is really changing unless there is some kind of a catastrophic event. But that's only because our lifespan is 100 years tops. The ecosystem works on grander scale and doesn't need any meteorites or global volcano eruptions to go through different phases. It is also possible that there are intervals of short rapid changes followed by a long time of considerably more stable situation.



                      I would start with the assumption that the most complex life on the planet is amphibian or that all species which resemble mammals and birds are capable of spending their whole lives on water if ground is too hostile. When the conditions on ground improve, those species are able to quickly colonize the new ecological niche. But since a few thousand years is not enough for evolution, all those species will be dependent on water: so no complex animals in steppes, deserts, mountain plateaus, etc. That part of the world is left for a very different ecosystem, one composed of plants and animals which are smaller, simpler, but because of that they can multiply and spread very quickly when they reach certain "critical mass".
                      Think of it as a biological version of a nuclear bomb. We start with a very desolate place, a desert far from water. There are some species of plants and animals there, but they're rare and live in a fragile balance: plants grow, herbivores eat them, carnivores eat herbivores, less herbivores mean more place for plants to grow, but also carnivores starve, and this small cycle of small organisms (bugs? insects? miniature tentacle monsters from hell) repeats itself. But this is not really a balance. Every cycle the average population grows a little. And with bigger population, every cycle is a little bit more violent. At some point we reach the critical mass and everything goes boom - in the biological sense. The plants of this strange violent ecosystem spread rapidly around the globe. Herbivores follow, but eating not only the plants they know, but also one which survived in the waters and only recently started to colonize the shores. Carnivores follow, but hunting not only herbivores they know, but all the complex animal life which survived the last cataclysm living in the sea. The only way for the complex ecosystem to survive is to hide in the sea again: the miniature tentacle monsters (*) cannot be stopped. But when they finally eat everything in their way, they die of starvation. And since the cycle was so violent this time, only a very small number of the species form their ecosystem survive - somewhere far away from the shores, on the desert, starting a new small cycle within a bigger cycle which takes thousands of years.



                      *) I think it's too easy to think of them as a swarm of insects. I'd invite you to imagine something different.






                      share|improve this answer









                      $endgroup$












                      • $begingroup$
                        sounds interesting. thanks.
                        $endgroup$
                        – anothernewnamehaha
                        Apr 9 at 14:53










                      • $begingroup$
                        You could also click the arrow up, you know ;)
                        $endgroup$
                        – makingthematrix
                        2 days ago













                      0












                      0








                      0





                      $begingroup$

                      If you want to have a repeatable pattern occuring every few thousand years I would suggest a biological reason rather than geological/astronomical. This way you can explain that the cycle is a part of a wider pattern in the ecosystem which lets you imagine more complex situations than just "boom! everything is destroyed! start to grow legs again, you stupid fish!" ;)



                      We are used to think that ecosystems are stable, but that's only because we have a very limited timeframe. Even though we know that there was a very different climate just twenty thousand years ago (and that now climate changes are even faster), our intuition tells us that summers and winters should be similar each year and nothing is really changing unless there is some kind of a catastrophic event. But that's only because our lifespan is 100 years tops. The ecosystem works on grander scale and doesn't need any meteorites or global volcano eruptions to go through different phases. It is also possible that there are intervals of short rapid changes followed by a long time of considerably more stable situation.



                      I would start with the assumption that the most complex life on the planet is amphibian or that all species which resemble mammals and birds are capable of spending their whole lives on water if ground is too hostile. When the conditions on ground improve, those species are able to quickly colonize the new ecological niche. But since a few thousand years is not enough for evolution, all those species will be dependent on water: so no complex animals in steppes, deserts, mountain plateaus, etc. That part of the world is left for a very different ecosystem, one composed of plants and animals which are smaller, simpler, but because of that they can multiply and spread very quickly when they reach certain "critical mass".
                      Think of it as a biological version of a nuclear bomb. We start with a very desolate place, a desert far from water. There are some species of plants and animals there, but they're rare and live in a fragile balance: plants grow, herbivores eat them, carnivores eat herbivores, less herbivores mean more place for plants to grow, but also carnivores starve, and this small cycle of small organisms (bugs? insects? miniature tentacle monsters from hell) repeats itself. But this is not really a balance. Every cycle the average population grows a little. And with bigger population, every cycle is a little bit more violent. At some point we reach the critical mass and everything goes boom - in the biological sense. The plants of this strange violent ecosystem spread rapidly around the globe. Herbivores follow, but eating not only the plants they know, but also one which survived in the waters and only recently started to colonize the shores. Carnivores follow, but hunting not only herbivores they know, but all the complex animal life which survived the last cataclysm living in the sea. The only way for the complex ecosystem to survive is to hide in the sea again: the miniature tentacle monsters (*) cannot be stopped. But when they finally eat everything in their way, they die of starvation. And since the cycle was so violent this time, only a very small number of the species form their ecosystem survive - somewhere far away from the shores, on the desert, starting a new small cycle within a bigger cycle which takes thousands of years.



                      *) I think it's too easy to think of them as a swarm of insects. I'd invite you to imagine something different.






                      share|improve this answer









                      $endgroup$



                      If you want to have a repeatable pattern occuring every few thousand years I would suggest a biological reason rather than geological/astronomical. This way you can explain that the cycle is a part of a wider pattern in the ecosystem which lets you imagine more complex situations than just "boom! everything is destroyed! start to grow legs again, you stupid fish!" ;)



                      We are used to think that ecosystems are stable, but that's only because we have a very limited timeframe. Even though we know that there was a very different climate just twenty thousand years ago (and that now climate changes are even faster), our intuition tells us that summers and winters should be similar each year and nothing is really changing unless there is some kind of a catastrophic event. But that's only because our lifespan is 100 years tops. The ecosystem works on grander scale and doesn't need any meteorites or global volcano eruptions to go through different phases. It is also possible that there are intervals of short rapid changes followed by a long time of considerably more stable situation.



                      I would start with the assumption that the most complex life on the planet is amphibian or that all species which resemble mammals and birds are capable of spending their whole lives on water if ground is too hostile. When the conditions on ground improve, those species are able to quickly colonize the new ecological niche. But since a few thousand years is not enough for evolution, all those species will be dependent on water: so no complex animals in steppes, deserts, mountain plateaus, etc. That part of the world is left for a very different ecosystem, one composed of plants and animals which are smaller, simpler, but because of that they can multiply and spread very quickly when they reach certain "critical mass".
                      Think of it as a biological version of a nuclear bomb. We start with a very desolate place, a desert far from water. There are some species of plants and animals there, but they're rare and live in a fragile balance: plants grow, herbivores eat them, carnivores eat herbivores, less herbivores mean more place for plants to grow, but also carnivores starve, and this small cycle of small organisms (bugs? insects? miniature tentacle monsters from hell) repeats itself. But this is not really a balance. Every cycle the average population grows a little. And with bigger population, every cycle is a little bit more violent. At some point we reach the critical mass and everything goes boom - in the biological sense. The plants of this strange violent ecosystem spread rapidly around the globe. Herbivores follow, but eating not only the plants they know, but also one which survived in the waters and only recently started to colonize the shores. Carnivores follow, but hunting not only herbivores they know, but all the complex animal life which survived the last cataclysm living in the sea. The only way for the complex ecosystem to survive is to hide in the sea again: the miniature tentacle monsters (*) cannot be stopped. But when they finally eat everything in their way, they die of starvation. And since the cycle was so violent this time, only a very small number of the species form their ecosystem survive - somewhere far away from the shores, on the desert, starting a new small cycle within a bigger cycle which takes thousands of years.



                      *) I think it's too easy to think of them as a swarm of insects. I'd invite you to imagine something different.







                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered Apr 9 at 13:12









                      makingthematrixmakingthematrix

                      831510




                      831510











                      • $begingroup$
                        sounds interesting. thanks.
                        $endgroup$
                        – anothernewnamehaha
                        Apr 9 at 14:53










                      • $begingroup$
                        You could also click the arrow up, you know ;)
                        $endgroup$
                        – makingthematrix
                        2 days ago
















                      • $begingroup$
                        sounds interesting. thanks.
                        $endgroup$
                        – anothernewnamehaha
                        Apr 9 at 14:53










                      • $begingroup$
                        You could also click the arrow up, you know ;)
                        $endgroup$
                        – makingthematrix
                        2 days ago















                      $begingroup$
                      sounds interesting. thanks.
                      $endgroup$
                      – anothernewnamehaha
                      Apr 9 at 14:53




                      $begingroup$
                      sounds interesting. thanks.
                      $endgroup$
                      – anothernewnamehaha
                      Apr 9 at 14:53












                      $begingroup$
                      You could also click the arrow up, you know ;)
                      $endgroup$
                      – makingthematrix
                      2 days ago




                      $begingroup$
                      You could also click the arrow up, you know ;)
                      $endgroup$
                      – makingthematrix
                      2 days ago










                      anothernewnamehaha is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      anothernewnamehaha is a new contributor. Be nice, and check out our Code of Conduct.












                      anothernewnamehaha is a new contributor. Be nice, and check out our Code of Conduct.











                      anothernewnamehaha is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Worldbuilding Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f143479%2fdoomsday-clock-for-my-fantasy-planet%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                      Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                      Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020