How many permutations does a countable set have? [duplicate] The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is symmetric group on natural numbers countable?Prove why this algorithm to compute all list permutations worksLooks like we picked the wrong theorem to popularize (Cantor diagonalization)Can someone please clarify combinations vs permutations?Mapping from reals to naturals if naturals can be used infinitely many timesWhy are positive rational numbers countable but real numbers are not?Is there a model of ZFC in which every real number is definable?Series that converge to every real number via permutationSeries and ConsistencyThe set of all digits in a real numberExplicit bijection between $Bbb R$ and permutations of $Bbb N$

Why not take a picture of a closer black hole?

Are spiders unable to hurt humans, especially very small spiders?

Is there a writing software that you can sort scenes like slides in PowerPoint?

How to make Illustrator type tool selection automatically adapt with text length

Can a flute soloist sit?

Huge performance difference of the command find with and without using %M option to show permissions

Mortgage adviser recommends a longer term than necessary combined with overpayments

Working through the single responsibility principle (SRP) in Python when calls are expensive

How to handle characters who are more educated than the author?

Could an empire control the whole planet with today's comunication methods?

Make it rain characters

How do I design a circuit to convert a 100 mV and 50 Hz sine wave to a square wave?

Is this wall load bearing? Blueprints and photos attached

Deal with toxic manager when you can't quit

Presidential Pardon

Store Dynamic-accessible hidden metadata in a cell

How to read αἱμύλιος or when to aspirate

How do you keep chess fun when your opponent constantly beats you?

Student Loan from years ago pops up and is taking my salary

Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?

What is the padding with red substance inside of steak packaging?

My body leaves; my core can stay



How many permutations does a countable set have? [duplicate]



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is symmetric group on natural numbers countable?Prove why this algorithm to compute all list permutations worksLooks like we picked the wrong theorem to popularize (Cantor diagonalization)Can someone please clarify combinations vs permutations?Mapping from reals to naturals if naturals can be used infinitely many timesWhy are positive rational numbers countable but real numbers are not?Is there a model of ZFC in which every real number is definable?Series that converge to every real number via permutationSeries and ConsistencyThe set of all digits in a real numberExplicit bijection between $Bbb R$ and permutations of $Bbb N$










2












$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38















2












$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38













2












2








2


0



$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?





This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers







permutations real-numbers






share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited Apr 8 at 12:38









Asaf Karagila

308k33441775




308k33441775






New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Apr 8 at 10:53









Lorenzo Lorenzo

184




184




New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.













  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38
















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38















$begingroup$
While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
$endgroup$
– Asaf Karagila
Apr 8 at 12:38




$begingroup$
While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
$endgroup$
– Asaf Karagila
Apr 8 at 12:38










1 Answer
1






active

oldest

votes


















6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20

















1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20















6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20













6












6








6





$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$



Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 8 at 10:57









5xum5xum

92.6k394162




92.6k394162











  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20
















  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20















$begingroup$
Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
$endgroup$
– Lorenzo
Apr 8 at 11:07




$begingroup$
Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
$endgroup$
– Lorenzo
Apr 8 at 11:07




1




1




$begingroup$
@Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
$endgroup$
– 5xum
Apr 8 at 11:08




$begingroup$
@Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
$endgroup$
– 5xum
Apr 8 at 11:08












$begingroup$
just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
$endgroup$
– Lorenzo
Apr 8 at 11:12




$begingroup$
just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
$endgroup$
– Lorenzo
Apr 8 at 11:12












$begingroup$
@Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
$endgroup$
– 5xum
Apr 8 at 11:13





$begingroup$
@Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
$endgroup$
– 5xum
Apr 8 at 11:13













$begingroup$
Ok I get it now, thanks
$endgroup$
– Lorenzo
Apr 8 at 11:20




$begingroup$
Ok I get it now, thanks
$endgroup$
– Lorenzo
Apr 8 at 11:20



Popular posts from this blog

Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020