How many permutations does a countable set have? [duplicate] The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is symmetric group on natural numbers countable?Prove why this algorithm to compute all list permutations worksLooks like we picked the wrong theorem to popularize (Cantor diagonalization)Can someone please clarify combinations vs permutations?Mapping from reals to naturals if naturals can be used infinitely many timesWhy are positive rational numbers countable but real numbers are not?Is there a model of ZFC in which every real number is definable?Series that converge to every real number via permutationSeries and ConsistencyThe set of all digits in a real numberExplicit bijection between $Bbb R$ and permutations of $Bbb N$

Why not take a picture of a closer black hole?

Are spiders unable to hurt humans, especially very small spiders?

Is there a writing software that you can sort scenes like slides in PowerPoint?

How to make Illustrator type tool selection automatically adapt with text length

Can a flute soloist sit?

Huge performance difference of the command find with and without using %M option to show permissions

Mortgage adviser recommends a longer term than necessary combined with overpayments

Working through the single responsibility principle (SRP) in Python when calls are expensive

How to handle characters who are more educated than the author?

Could an empire control the whole planet with today's comunication methods?

Make it rain characters

How do I design a circuit to convert a 100 mV and 50 Hz sine wave to a square wave?

Is this wall load bearing? Blueprints and photos attached

Deal with toxic manager when you can't quit

Presidential Pardon

Store Dynamic-accessible hidden metadata in a cell

How to read αἱμύλιος or when to aspirate

How do you keep chess fun when your opponent constantly beats you?

Student Loan from years ago pops up and is taking my salary

Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?

What is the padding with red substance inside of steak packaging?

My body leaves; my core can stay



How many permutations does a countable set have? [duplicate]



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is symmetric group on natural numbers countable?Prove why this algorithm to compute all list permutations worksLooks like we picked the wrong theorem to popularize (Cantor diagonalization)Can someone please clarify combinations vs permutations?Mapping from reals to naturals if naturals can be used infinitely many timesWhy are positive rational numbers countable but real numbers are not?Is there a model of ZFC in which every real number is definable?Series that converge to every real number via permutationSeries and ConsistencyThe set of all digits in a real numberExplicit bijection between $Bbb R$ and permutations of $Bbb N$










2












$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38















2












$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38













2












2








2


0



$begingroup$



This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers



I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?





This question already has an answer here:



  • Is symmetric group on natural numbers countable?

    8 answers







permutations real-numbers






share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited Apr 8 at 12:38









Asaf Karagila

308k33441775




308k33441775






New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Apr 8 at 10:53









Lorenzo Lorenzo

184




184




New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Asaf Karagila Apr 8 at 12:37


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.













  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38
















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    Apr 8 at 12:38















$begingroup$
While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
$endgroup$
– Asaf Karagila
Apr 8 at 12:38




$begingroup$
While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
$endgroup$
– Asaf Karagila
Apr 8 at 12:38










1 Answer
1






active

oldest

votes


















6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20

















1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20















6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20













6












6








6





$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$



Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 8 at 10:57









5xum5xum

92.6k394162




92.6k394162











  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20
















  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    Apr 8 at 11:07






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    Apr 8 at 11:08










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    Apr 8 at 11:12










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    Apr 8 at 11:13











  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    Apr 8 at 11:20















$begingroup$
Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
$endgroup$
– Lorenzo
Apr 8 at 11:07




$begingroup$
Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
$endgroup$
– Lorenzo
Apr 8 at 11:07




1




1




$begingroup$
@Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
$endgroup$
– 5xum
Apr 8 at 11:08




$begingroup$
@Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
$endgroup$
– 5xum
Apr 8 at 11:08












$begingroup$
just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
$endgroup$
– Lorenzo
Apr 8 at 11:12




$begingroup$
just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
$endgroup$
– Lorenzo
Apr 8 at 11:12












$begingroup$
@Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
$endgroup$
– 5xum
Apr 8 at 11:13





$begingroup$
@Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
$endgroup$
– 5xum
Apr 8 at 11:13













$begingroup$
Ok I get it now, thanks
$endgroup$
– Lorenzo
Apr 8 at 11:20




$begingroup$
Ok I get it now, thanks
$endgroup$
– Lorenzo
Apr 8 at 11:20



Popular posts from this blog

Wikipedia:Vital articles Мазмуну Biography - Өмүр баян Philosophy and psychology - Философия жана психология Religion - Дин Social sciences - Коомдук илимдер Language and literature - Тил жана адабият Science - Илим Technology - Технология Arts and recreation - Искусство жана эс алуу History and geography - Тарых жана география Навигация менюсу

Bruxelas-Capital Índice Historia | Composición | Situación lingüística | Clima | Cidades irmandadas | Notas | Véxase tamén | Menú de navegacióneO uso das linguas en Bruxelas e a situación do neerlandés"Rexión de Bruxelas Capital"o orixinalSitio da rexiónPáxina de Bruselas no sitio da Oficina de Promoción Turística de Valonia e BruxelasMapa Interactivo da Rexión de Bruxelas-CapitaleeWorldCat332144929079854441105155190212ID28008674080552-90000 0001 0666 3698n94104302ID540940339365017018237

What should I write in an apology letter, since I have decided not to join a company after accepting an offer letterShould I keep looking after accepting a job offer?What should I do when I've been verbally told I would get an offer letter, but still haven't gotten one after 4 weeks?Do I accept an offer from a company that I am not likely to join?New job hasn't confirmed starting date and I want to give current employer as much notice as possibleHow should I address my manager in my resignation letter?HR delayed background verification, now jobless as resignedNo email communication after accepting a formal written offer. How should I phrase the call?What should I do if after receiving a verbal offer letter I am informed that my written job offer is put on hold due to some internal issues?Should I inform the current employer that I am about to resign within 1-2 weeks since I have signed the offer letter and waiting for visa?What company will do, if I send their offer letter to another company