using trigonometric identitiesSimplify a trigonometric expressionTrigonometric Identities To ProveSimplifying second derivative using trigonometric identitiesTrigonometric Identities helpFind the Value of Trigonometric ExpressionTrigonometric Identities QuestionTricky trig question from GREProve this equation using trigonometric identitiesPythagorean identitiesFind the angle $x$ using trigonometric identities
Access to all elements on the page
Humans meet a distant alien species. How do they standardize? - Units of Measure
How to detach yourself from a character you're going to kill?
Should we freeze the number of people coming in to the study for Kaplan-Meier test
How to make thick Asian sauces?
How can I determine the spell save DC of a monster/NPC?
Sucuri detects malware on wordpress but I can't find the malicious code
Strange math syntax in old basic listing
Why is Colorado so different politically from nearby states?
Opposite of "Squeaky wheel gets the grease"
How can Iron Man's suit withstand this?
Word for a small burst of laughter that can't be held back
What is the right way to float a home lab?
Is it a problem that pull requests are approved without any comments
How to decline physical affection from a child whose parents are pressuring them?
Rotated Position of Integers
*CoS Spolier* How is it possible for Mordenkainen to be alive during the Curse of Strahd adventure?
Is it OK to bring delicacies from hometown as tokens of gratitude for an out-of-town interview?
Is it grammatical to use "car" like this?
Can commodity 3d printer extrusion hardware and filament be used for injection molding?
How did rebel fighters get past the Scarif shield?
Can an old DSLR be upgraded to match modern smartphone image quality
What happens if you do emergency landing on a US base in middle of the ocean?
How can I offer a test ride while selling a bike?
using trigonometric identities
Simplify a trigonometric expressionTrigonometric Identities To ProveSimplifying second derivative using trigonometric identitiesTrigonometric Identities helpFind the Value of Trigonometric ExpressionTrigonometric Identities QuestionTricky trig question from GREProve this equation using trigonometric identitiesPythagorean identitiesFind the angle $x$ using trigonometric identities
$begingroup$
For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$
I tried to use that:
beginalign
sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
&=1^2-frac12(2sin xcos x)^2\
&=1-frac12sin^2 (2x)\
&=1-frac12left(frac1-cos 4x2right)\
&=frac34+frac14cos 4x
endalign
but i can't try more
trigonometry
$endgroup$
add a comment |
$begingroup$
For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$
I tried to use that:
beginalign
sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
&=1^2-frac12(2sin xcos x)^2\
&=1-frac12sin^2 (2x)\
&=1-frac12left(frac1-cos 4x2right)\
&=frac34+frac14cos 4x
endalign
but i can't try more
trigonometry
$endgroup$
add a comment |
$begingroup$
For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$
I tried to use that:
beginalign
sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
&=1^2-frac12(2sin xcos x)^2\
&=1-frac12sin^2 (2x)\
&=1-frac12left(frac1-cos 4x2right)\
&=frac34+frac14cos 4x
endalign
but i can't try more
trigonometry
$endgroup$
For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$
I tried to use that:
beginalign
sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
&=1^2-frac12(2sin xcos x)^2\
&=1-frac12sin^2 (2x)\
&=1-frac12left(frac1-cos 4x2right)\
&=frac34+frac14cos 4x
endalign
but i can't try more
trigonometry
trigonometry
asked May 17 at 17:58
GeorgeGeorge
3417
3417
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$
$displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$
$endgroup$
add a comment |
$begingroup$
Note that
$$beginalignsin^4x +cos^2x &=
sin^2x(1-cos^2x) +cos^2x\
&=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
endalign$$
Hence, according to your work,
$$beginalign
2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
&=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$
Can you take it from here?
$endgroup$
add a comment |
$begingroup$
$c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$
$iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$
$P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$
using $sin2x=2sin xcos x,cos2y=2-2sin^2y$
We need $$dfrac1P+dfrac2P=?$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3229789%2fusing-trigonometric-identities%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$
$displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$
$endgroup$
add a comment |
$begingroup$
$displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$
$displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$
$endgroup$
add a comment |
$begingroup$
$displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$
$displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$
$endgroup$
$displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$
$displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$
answered May 17 at 18:03
CY AriesCY Aries
20k12046
20k12046
add a comment |
add a comment |
$begingroup$
Note that
$$beginalignsin^4x +cos^2x &=
sin^2x(1-cos^2x) +cos^2x\
&=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
endalign$$
Hence, according to your work,
$$beginalign
2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
&=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$
Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Note that
$$beginalignsin^4x +cos^2x &=
sin^2x(1-cos^2x) +cos^2x\
&=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
endalign$$
Hence, according to your work,
$$beginalign
2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
&=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$
Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Note that
$$beginalignsin^4x +cos^2x &=
sin^2x(1-cos^2x) +cos^2x\
&=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
endalign$$
Hence, according to your work,
$$beginalign
2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
&=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$
Can you take it from here?
$endgroup$
Note that
$$beginalignsin^4x +cos^2x &=
sin^2x(1-cos^2x) +cos^2x\
&=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
endalign$$
Hence, according to your work,
$$beginalign
2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
&=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$
Can you take it from here?
edited May 18 at 7:41
answered May 17 at 18:04
Robert ZRobert Z
103k1073147
103k1073147
add a comment |
add a comment |
$begingroup$
$c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$
$iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$
$P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$
using $sin2x=2sin xcos x,cos2y=2-2sin^2y$
We need $$dfrac1P+dfrac2P=?$$
$endgroup$
add a comment |
$begingroup$
$c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$
$iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$
$P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$
using $sin2x=2sin xcos x,cos2y=2-2sin^2y$
We need $$dfrac1P+dfrac2P=?$$
$endgroup$
add a comment |
$begingroup$
$c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$
$iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$
$P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$
using $sin2x=2sin xcos x,cos2y=2-2sin^2y$
We need $$dfrac1P+dfrac2P=?$$
$endgroup$
$c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$
$iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$
$P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$
using $sin2x=2sin xcos x,cos2y=2-2sin^2y$
We need $$dfrac1P+dfrac2P=?$$
answered May 17 at 18:20
lab bhattacharjeelab bhattacharjee
231k15161283
231k15161283
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3229789%2fusing-trigonometric-identities%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown