using trigonometric identitiesSimplify a trigonometric expressionTrigonometric Identities To ProveSimplifying second derivative using trigonometric identitiesTrigonometric Identities helpFind the Value of Trigonometric ExpressionTrigonometric Identities QuestionTricky trig question from GREProve this equation using trigonometric identitiesPythagorean identitiesFind the angle $x$ using trigonometric identities

Access to all elements on the page

Humans meet a distant alien species. How do they standardize? - Units of Measure

How to detach yourself from a character you're going to kill?

Should we freeze the number of people coming in to the study for Kaplan-Meier test

How to make thick Asian sauces?

How can I determine the spell save DC of a monster/NPC?

Sucuri detects malware on wordpress but I can't find the malicious code

Strange math syntax in old basic listing

Why is Colorado so different politically from nearby states?

Opposite of "Squeaky wheel gets the grease"

How can Iron Man's suit withstand this?

Word for a small burst of laughter that can't be held back

What is the right way to float a home lab?

Is it a problem that pull requests are approved without any comments

How to decline physical affection from a child whose parents are pressuring them?

Rotated Position of Integers

*CoS Spolier* How is it possible for Mordenkainen to be alive during the Curse of Strahd adventure?

Is it OK to bring delicacies from hometown as tokens of gratitude for an out-of-town interview?

Is it grammatical to use "car" like this?

Can commodity 3d printer extrusion hardware and filament be used for injection molding?

How did rebel fighters get past the Scarif shield?

Can an old DSLR be upgraded to match modern smartphone image quality

What happens if you do emergency landing on a US base in middle of the ocean?

How can I offer a test ride while selling a bike?



using trigonometric identities


Simplify a trigonometric expressionTrigonometric Identities To ProveSimplifying second derivative using trigonometric identitiesTrigonometric Identities helpFind the Value of Trigonometric ExpressionTrigonometric Identities QuestionTricky trig question from GREProve this equation using trigonometric identitiesPythagorean identitiesFind the angle $x$ using trigonometric identities













2












$begingroup$


For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$



I tried to use that:



beginalign
sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
&=1^2-frac12(2sin xcos x)^2\
&=1-frac12sin^2 (2x)\
&=1-frac12left(frac1-cos 4x2right)\
&=frac34+frac14cos 4x
endalign



but i can't try more










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$



    I tried to use that:



    beginalign
    sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
    &=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
    &=1^2-frac12(2sin xcos x)^2\
    &=1-frac12sin^2 (2x)\
    &=1-frac12left(frac1-cos 4x2right)\
    &=frac34+frac14cos 4x
    endalign



    but i can't try more










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$



      I tried to use that:



      beginalign
      sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
      &=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
      &=1^2-frac12(2sin xcos x)^2\
      &=1-frac12sin^2 (2x)\
      &=1-frac12left(frac1-cos 4x2right)\
      &=frac34+frac14cos 4x
      endalign



      but i can't try more










      share|cite|improve this question









      $endgroup$




      For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$



      I tried to use that:



      beginalign
      sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
      &=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
      &=1^2-frac12(2sin xcos x)^2\
      &=1-frac12sin^2 (2x)\
      &=1-frac12left(frac1-cos 4x2right)\
      &=frac34+frac14cos 4x
      endalign



      but i can't try more







      trigonometry






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked May 17 at 17:58









      GeorgeGeorge

      3417




      3417




















          3 Answers
          3






          active

          oldest

          votes


















          7












          $begingroup$

          $displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$



          $displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$






          share|cite|improve this answer









          $endgroup$




















            5












            $begingroup$

            Note that
            $$beginalignsin^4x +cos^2x &=
            sin^2x(1-cos^2x) +cos^2x\
            &=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
            endalign$$

            Hence, according to your work,
            $$beginalign
            2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
            &=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$

            Can you take it from here?






            share|cite|improve this answer











            $endgroup$




















              0












              $begingroup$

              $c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$



              $iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$



              $P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$



              using $sin2x=2sin xcos x,cos2y=2-2sin^2y$



              We need $$dfrac1P+dfrac2P=?$$






              share|cite|improve this answer









              $endgroup$













                Your Answer








                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3229789%2fusing-trigonometric-identities%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                7












                $begingroup$

                $displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$



                $displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$






                share|cite|improve this answer









                $endgroup$

















                  7












                  $begingroup$

                  $displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$



                  $displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$






                  share|cite|improve this answer









                  $endgroup$















                    7












                    7








                    7





                    $begingroup$

                    $displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$



                    $displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$






                    share|cite|improve this answer









                    $endgroup$



                    $displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$



                    $displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered May 17 at 18:03









                    CY AriesCY Aries

                    20k12046




                    20k12046





















                        5












                        $begingroup$

                        Note that
                        $$beginalignsin^4x +cos^2x &=
                        sin^2x(1-cos^2x) +cos^2x\
                        &=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
                        endalign$$

                        Hence, according to your work,
                        $$beginalign
                        2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
                        &=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$

                        Can you take it from here?






                        share|cite|improve this answer











                        $endgroup$

















                          5












                          $begingroup$

                          Note that
                          $$beginalignsin^4x +cos^2x &=
                          sin^2x(1-cos^2x) +cos^2x\
                          &=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
                          endalign$$

                          Hence, according to your work,
                          $$beginalign
                          2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
                          &=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$

                          Can you take it from here?






                          share|cite|improve this answer











                          $endgroup$















                            5












                            5








                            5





                            $begingroup$

                            Note that
                            $$beginalignsin^4x +cos^2x &=
                            sin^2x(1-cos^2x) +cos^2x\
                            &=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
                            endalign$$

                            Hence, according to your work,
                            $$beginalign
                            2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
                            &=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$

                            Can you take it from here?






                            share|cite|improve this answer











                            $endgroup$



                            Note that
                            $$beginalignsin^4x +cos^2x &=
                            sin^2x(1-cos^2x) +cos^2x\
                            &=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
                            endalign$$

                            Hence, according to your work,
                            $$beginalign
                            2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
                            &=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$

                            Can you take it from here?







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited May 18 at 7:41

























                            answered May 17 at 18:04









                            Robert ZRobert Z

                            103k1073147




                            103k1073147





















                                0












                                $begingroup$

                                $c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$



                                $iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$



                                $P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$



                                using $sin2x=2sin xcos x,cos2y=2-2sin^2y$



                                We need $$dfrac1P+dfrac2P=?$$






                                share|cite|improve this answer









                                $endgroup$

















                                  0












                                  $begingroup$

                                  $c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$



                                  $iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$



                                  $P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$



                                  using $sin2x=2sin xcos x,cos2y=2-2sin^2y$



                                  We need $$dfrac1P+dfrac2P=?$$






                                  share|cite|improve this answer









                                  $endgroup$















                                    0












                                    0








                                    0





                                    $begingroup$

                                    $c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$



                                    $iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$



                                    $P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$



                                    using $sin2x=2sin xcos x,cos2y=2-2sin^2y$



                                    We need $$dfrac1P+dfrac2P=?$$






                                    share|cite|improve this answer









                                    $endgroup$



                                    $c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$



                                    $iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$



                                    $P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$



                                    using $sin2x=2sin xcos x,cos2y=2-2sin^2y$



                                    We need $$dfrac1P+dfrac2P=?$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered May 17 at 18:20









                                    lab bhattacharjeelab bhattacharjee

                                    231k15161283




                                    231k15161283



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3229789%2fusing-trigonometric-identities%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                                        Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                                        Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020