Congruence, Equal, and EquivalenceUncertain notation in coding theory bookwhat is ≡ operator equal to in math?Symbol for “if and only if”: $implies$ or $iff$?Origin and usage of $therefore$ and $because$How do I learn all the weird symbols and notations?Why do we use “congruent to” instead of equal to?What's the difference (if any) between writing $(n-1)/2$ and $fracn-12$?Congruence subgroup action notationWhat does an equal sign mean in a parenthesis?What is the difference between “$=$” and “$equiv$”?

Avoiding cliches when writing gods

How hard would it be to convert a glider into an powered electric aircraft?

How to skip replacing first occurrence of a character in each line?

How can drunken, homicidal elves successfully conduct a wild hunt?

Reading two lines in piano

Word for a small burst of laughter that can't be held back

Is there any word or phrase for negative bearing?

Building a road to escape Earth's gravity by making a pyramid on Antartica

Bent spoke design wheels — feasible?

Company did not petition for visa in a timely manner. Is asking me to work from overseas, but wants me to take a paycut

Do any instruments not produce overtones?

Is it a problem that pull requests are approved without any comments

How were concentration and extermination camp guards recruited?

Does the growth of home value benefit from compound interest?

Are there cubesats in GEO?

C SIGINT signal in Linux

Smooth switching between 12v batteries, with toggle switch

Is it possible for people to live in the eye of a permanent hypercane?

Aligning object in a commutative diagram

How can Iron Man's suit withstand this?

Why is quantum entanglement surprising?

Traffic law UK, pedestrians

Adding two lambda-functions in C++

How to make thick Asian sauces?



Congruence, Equal, and Equivalence


Uncertain notation in coding theory bookwhat is ≡ operator equal to in math?Symbol for “if and only if”: $implies$ or $iff$?Origin and usage of $therefore$ and $because$How do I learn all the weird symbols and notations?Why do we use “congruent to” instead of equal to?What's the difference (if any) between writing $(n-1)/2$ and $fracn-12$?Congruence subgroup action notationWhat does an equal sign mean in a parenthesis?What is the difference between “$=$” and “$equiv$”?













1












$begingroup$


I know this is very basic problem about math. But sometimes confusing.
What is the difference among



Equal Sign $left(,=,right)$



Congruence Sign (we saw this on number theory) $left(,equiv,right)$



Equivalence Sign $left(,iff,right)$










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    I know this is very basic problem about math. But sometimes confusing.
    What is the difference among



    Equal Sign $left(,=,right)$



    Congruence Sign (we saw this on number theory) $left(,equiv,right)$



    Equivalence Sign $left(,iff,right)$










    share|cite|improve this question











    $endgroup$














      1












      1








      1


      1



      $begingroup$


      I know this is very basic problem about math. But sometimes confusing.
      What is the difference among



      Equal Sign $left(,=,right)$



      Congruence Sign (we saw this on number theory) $left(,equiv,right)$



      Equivalence Sign $left(,iff,right)$










      share|cite|improve this question











      $endgroup$




      I know this is very basic problem about math. But sometimes confusing.
      What is the difference among



      Equal Sign $left(,=,right)$



      Congruence Sign (we saw this on number theory) $left(,equiv,right)$



      Equivalence Sign $left(,iff,right)$







      notation popular-math






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited May 22 at 5:30









      J.-E. Pin

      19.1k21755




      19.1k21755










      asked May 19 at 22:04









      user516076user516076

      1017




      1017




















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Equals can be generalized to an equivalence relation. This means a relation on a set $S$, $sim$ which satisfies the following properties:




          1. $asim a$ for all $ain S$ (Reflexive)

          2. If $asim b$, then $b sim a$ (Symmetric)

          3. If $a sim b$ and $bsim c$, then $a sim c$ (transitive).

          Equals should satisfy those 3 properties.



          Congruence goes one step further. It is used to indicate that it preserves some kind of operation on the set. In your case, congruence mod $n$ is indicating that $a pmod n$ times $b pmod n$ is the same thing as $ab pmod n$. So you can exchange what it is equivalent to before doing the operation or after and you get the same thing. It is also congruence under addition.



          $Leftrightarrow$ is usually talking about the equivalence of two statements. For instance $a in mathbbZ$ is even if and only if ($Leftrightarrow$) $a=2n$ for some $nin mathbbZ$.






          share|cite|improve this answer











          $endgroup$




















            1












            $begingroup$

            The equal sign between two items mean they are the same. Depending the context this equality is defined or assumed to be understood.



            For example if $A$ and $B$ are sets, then $A=B$ means every element of $A$ is an element of $B$ and every element of $B$ is an element of $A$.



            On the other hand if $a/b$ and $c/d$ are fractions, then $a/b=c/d$ is defined as $ad=bc$



            Congruence sign,$left(,equiv,right)$ comes with a (mod). The definition $aequiv b, pmod n $ is that $b-a$ is divisible by $n$



            For example $27equiv 13 pmod 7$



            The $iff$ sign is if and only if sign and $piff q$ means $p$ implies $q$ and $q$ implies $p$ where $p$ and $q$ are statements.






            share|cite|improve this answer











            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3232361%2fcongruence-equal-and-equivalence%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Equals can be generalized to an equivalence relation. This means a relation on a set $S$, $sim$ which satisfies the following properties:




              1. $asim a$ for all $ain S$ (Reflexive)

              2. If $asim b$, then $b sim a$ (Symmetric)

              3. If $a sim b$ and $bsim c$, then $a sim c$ (transitive).

              Equals should satisfy those 3 properties.



              Congruence goes one step further. It is used to indicate that it preserves some kind of operation on the set. In your case, congruence mod $n$ is indicating that $a pmod n$ times $b pmod n$ is the same thing as $ab pmod n$. So you can exchange what it is equivalent to before doing the operation or after and you get the same thing. It is also congruence under addition.



              $Leftrightarrow$ is usually talking about the equivalence of two statements. For instance $a in mathbbZ$ is even if and only if ($Leftrightarrow$) $a=2n$ for some $nin mathbbZ$.






              share|cite|improve this answer











              $endgroup$

















                1












                $begingroup$

                Equals can be generalized to an equivalence relation. This means a relation on a set $S$, $sim$ which satisfies the following properties:




                1. $asim a$ for all $ain S$ (Reflexive)

                2. If $asim b$, then $b sim a$ (Symmetric)

                3. If $a sim b$ and $bsim c$, then $a sim c$ (transitive).

                Equals should satisfy those 3 properties.



                Congruence goes one step further. It is used to indicate that it preserves some kind of operation on the set. In your case, congruence mod $n$ is indicating that $a pmod n$ times $b pmod n$ is the same thing as $ab pmod n$. So you can exchange what it is equivalent to before doing the operation or after and you get the same thing. It is also congruence under addition.



                $Leftrightarrow$ is usually talking about the equivalence of two statements. For instance $a in mathbbZ$ is even if and only if ($Leftrightarrow$) $a=2n$ for some $nin mathbbZ$.






                share|cite|improve this answer











                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  Equals can be generalized to an equivalence relation. This means a relation on a set $S$, $sim$ which satisfies the following properties:




                  1. $asim a$ for all $ain S$ (Reflexive)

                  2. If $asim b$, then $b sim a$ (Symmetric)

                  3. If $a sim b$ and $bsim c$, then $a sim c$ (transitive).

                  Equals should satisfy those 3 properties.



                  Congruence goes one step further. It is used to indicate that it preserves some kind of operation on the set. In your case, congruence mod $n$ is indicating that $a pmod n$ times $b pmod n$ is the same thing as $ab pmod n$. So you can exchange what it is equivalent to before doing the operation or after and you get the same thing. It is also congruence under addition.



                  $Leftrightarrow$ is usually talking about the equivalence of two statements. For instance $a in mathbbZ$ is even if and only if ($Leftrightarrow$) $a=2n$ for some $nin mathbbZ$.






                  share|cite|improve this answer











                  $endgroup$



                  Equals can be generalized to an equivalence relation. This means a relation on a set $S$, $sim$ which satisfies the following properties:




                  1. $asim a$ for all $ain S$ (Reflexive)

                  2. If $asim b$, then $b sim a$ (Symmetric)

                  3. If $a sim b$ and $bsim c$, then $a sim c$ (transitive).

                  Equals should satisfy those 3 properties.



                  Congruence goes one step further. It is used to indicate that it preserves some kind of operation on the set. In your case, congruence mod $n$ is indicating that $a pmod n$ times $b pmod n$ is the same thing as $ab pmod n$. So you can exchange what it is equivalent to before doing the operation or after and you get the same thing. It is also congruence under addition.



                  $Leftrightarrow$ is usually talking about the equivalence of two statements. For instance $a in mathbbZ$ is even if and only if ($Leftrightarrow$) $a=2n$ for some $nin mathbbZ$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited May 21 at 6:26









                  YuiTo Cheng

                  3,33071545




                  3,33071545










                  answered May 19 at 22:30









                  CPMCPM

                  3,1601023




                  3,1601023





















                      1












                      $begingroup$

                      The equal sign between two items mean they are the same. Depending the context this equality is defined or assumed to be understood.



                      For example if $A$ and $B$ are sets, then $A=B$ means every element of $A$ is an element of $B$ and every element of $B$ is an element of $A$.



                      On the other hand if $a/b$ and $c/d$ are fractions, then $a/b=c/d$ is defined as $ad=bc$



                      Congruence sign,$left(,equiv,right)$ comes with a (mod). The definition $aequiv b, pmod n $ is that $b-a$ is divisible by $n$



                      For example $27equiv 13 pmod 7$



                      The $iff$ sign is if and only if sign and $piff q$ means $p$ implies $q$ and $q$ implies $p$ where $p$ and $q$ are statements.






                      share|cite|improve this answer











                      $endgroup$

















                        1












                        $begingroup$

                        The equal sign between two items mean they are the same. Depending the context this equality is defined or assumed to be understood.



                        For example if $A$ and $B$ are sets, then $A=B$ means every element of $A$ is an element of $B$ and every element of $B$ is an element of $A$.



                        On the other hand if $a/b$ and $c/d$ are fractions, then $a/b=c/d$ is defined as $ad=bc$



                        Congruence sign,$left(,equiv,right)$ comes with a (mod). The definition $aequiv b, pmod n $ is that $b-a$ is divisible by $n$



                        For example $27equiv 13 pmod 7$



                        The $iff$ sign is if and only if sign and $piff q$ means $p$ implies $q$ and $q$ implies $p$ where $p$ and $q$ are statements.






                        share|cite|improve this answer











                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          The equal sign between two items mean they are the same. Depending the context this equality is defined or assumed to be understood.



                          For example if $A$ and $B$ are sets, then $A=B$ means every element of $A$ is an element of $B$ and every element of $B$ is an element of $A$.



                          On the other hand if $a/b$ and $c/d$ are fractions, then $a/b=c/d$ is defined as $ad=bc$



                          Congruence sign,$left(,equiv,right)$ comes with a (mod). The definition $aequiv b, pmod n $ is that $b-a$ is divisible by $n$



                          For example $27equiv 13 pmod 7$



                          The $iff$ sign is if and only if sign and $piff q$ means $p$ implies $q$ and $q$ implies $p$ where $p$ and $q$ are statements.






                          share|cite|improve this answer











                          $endgroup$



                          The equal sign between two items mean they are the same. Depending the context this equality is defined or assumed to be understood.



                          For example if $A$ and $B$ are sets, then $A=B$ means every element of $A$ is an element of $B$ and every element of $B$ is an element of $A$.



                          On the other hand if $a/b$ and $c/d$ are fractions, then $a/b=c/d$ is defined as $ad=bc$



                          Congruence sign,$left(,equiv,right)$ comes with a (mod). The definition $aequiv b, pmod n $ is that $b-a$ is divisible by $n$



                          For example $27equiv 13 pmod 7$



                          The $iff$ sign is if and only if sign and $piff q$ means $p$ implies $q$ and $q$ implies $p$ where $p$ and $q$ are statements.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited May 19 at 22:27









                          Bernard

                          127k743120




                          127k743120










                          answered May 19 at 22:23









                          Mohammad Riazi-KermaniMohammad Riazi-Kermani

                          44.7k42163




                          44.7k42163



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3232361%2fcongruence-equal-and-equivalence%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                              Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                              Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020