Fair gambler's ruin problem intuitionProbability of Gambler's Ruin with Unequal Gain/LossAdaptive gambler's ruin problemGambler's Ruin with no set target for winGambler's ruin problem - unsure about the number of roundsEffect of Gambler's Ruin Bet Size on DurationGambler's ruin: verifying Markov propertyComparison of duration of two gambler's ruin gamesGambler's Ruin - Probability of Losing in t StepsGambler's Ruin: Win 2 dollars, Lose 1 dollarGambler's ruin Markov chain

Is it possible to record a short contained sound no longer than 60 milliseconds?

Maximum likelihood parameters deviate from posterior distributions

Can you really stack all of this on an Opportunity Attack?

Alternative to sending password over mail?

Intersection point of 2 lines defined by 2 points each

Can I ask the recruiters in my resume to put the reason why I am rejected?

Can I make popcorn with any corn?

Is it legal for company to use my work email to pretend I still work there?

Paid for article while in US on F-1 visa?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Could an aircraft fly or hover using only jets of compressed air?

How can bays and straits be determined in a procedurally generated map?

Is it unprofessional to ask if a job posting on GlassDoor is real?

What does the "remote control" for a QF-4 look like?

Why can't we play rap on piano?

Why are electrically insulating heatsinks so rare? Is it just cost?

What's that red-plus icon near a text?

What's the point of deactivating Num Lock on login screens?

Languages that we cannot (dis)prove to be Context-Free

Important Resources for Dark Age Civilizations?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Replacing matching entries in one column of a file by another column from a different file

Does detail obscure or enhance action?

How much of data wrangling is a data scientist's job?



Fair gambler's ruin problem intuition


Probability of Gambler's Ruin with Unequal Gain/LossAdaptive gambler's ruin problemGambler's Ruin with no set target for winGambler's ruin problem - unsure about the number of roundsEffect of Gambler's Ruin Bet Size on DurationGambler's ruin: verifying Markov propertyComparison of duration of two gambler's ruin gamesGambler's Ruin - Probability of Losing in t StepsGambler's Ruin: Win 2 dollars, Lose 1 dollarGambler's ruin Markov chain













7












$begingroup$


In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.



In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.



Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.



Is there an intuitive reason why this is the case?










share|cite|improve this question











$endgroup$
















    7












    $begingroup$


    In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.



    In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.



    Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.



    Is there an intuitive reason why this is the case?










    share|cite|improve this question











    $endgroup$














      7












      7








      7


      1



      $begingroup$


      In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.



      In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.



      Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.



      Is there an intuitive reason why this is the case?










      share|cite|improve this question











      $endgroup$




      In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.



      In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.



      Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.



      Is there an intuitive reason why this is the case?







      probability stochastic-processes intuition






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago









      BSplitter

      572215




      572215










      asked Apr 3 at 0:48









      platypus17platypus17

      667




      667




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that



          $$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$



          Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.



          Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by



          $$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$



          based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives



          $$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$



          Having the summations only include the common terms on both sides gives



          $$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$



          Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes



          $$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$



          Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.






          share|cite|improve this answer











          $endgroup$




















            8












            $begingroup$

            The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get



            $$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172677%2ffair-gamblers-ruin-problem-intuition%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5












              $begingroup$

              Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that



              $$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$



              Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.



              Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by



              $$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$



              based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives



              $$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$



              Having the summations only include the common terms on both sides gives



              $$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$



              Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes



              $$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$



              Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.






              share|cite|improve this answer











              $endgroup$

















                5












                $begingroup$

                Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that



                $$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$



                Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.



                Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by



                $$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$



                based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives



                $$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$



                Having the summations only include the common terms on both sides gives



                $$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$



                Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes



                $$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$



                Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.






                share|cite|improve this answer











                $endgroup$















                  5












                  5








                  5





                  $begingroup$

                  Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that



                  $$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$



                  Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.



                  Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by



                  $$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$



                  based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives



                  $$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$



                  Having the summations only include the common terms on both sides gives



                  $$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$



                  Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes



                  $$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$



                  Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.






                  share|cite|improve this answer











                  $endgroup$



                  Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that



                  $$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$



                  Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.



                  Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by



                  $$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$



                  based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives



                  $$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$



                  Having the summations only include the common terms on both sides gives



                  $$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$



                  Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes



                  $$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$



                  Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Apr 3 at 2:54

























                  answered Apr 3 at 1:25









                  John OmielanJohn Omielan

                  4,6312215




                  4,6312215





















                      8












                      $begingroup$

                      The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get



                      $$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.






                      share|cite|improve this answer











                      $endgroup$

















                        8












                        $begingroup$

                        The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get



                        $$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.






                        share|cite|improve this answer











                        $endgroup$















                          8












                          8








                          8





                          $begingroup$

                          The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get



                          $$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.






                          share|cite|improve this answer











                          $endgroup$



                          The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get



                          $$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 2 days ago

























                          answered Apr 3 at 1:00









                          John DoeJohn Doe

                          11.8k11339




                          11.8k11339



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172677%2ffair-gamblers-ruin-problem-intuition%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                              Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                              Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020