What is the geometrical meaning of higher Chern forms and classes?GAGA and Chern classesProving the basic identity which implies the Chern-Weil theorem Which torsion classes in integral cohomology are Chern classes of flat bundles?Why is the integral of the second chern class an integer?Schur polynomials in the Chern classes as direct imagesHow does one go from Chern--Weil to cohomology classes on BGL(n,C)?Atiyah classes of holomorphic vector bundles with trivial Chern classesChern classes and singular hermitian metrics on vector bundlesChern Classes: two approachesWhat is $SL(2,mathbbR)$-Chern-SImons Theory?

What is the geometrical meaning of higher Chern forms and classes?


GAGA and Chern classesProving the basic identity which implies the Chern-Weil theorem Which torsion classes in integral cohomology are Chern classes of flat bundles?Why is the integral of the second chern class an integer?Schur polynomials in the Chern classes as direct imagesHow does one go from Chern--Weil to cohomology classes on BGL(n,C)?Atiyah classes of holomorphic vector bundles with trivial Chern classesChern classes and singular hermitian metrics on vector bundlesChern Classes: two approachesWhat is $SL(2,mathbbR)$-Chern-SImons Theory?













7












$begingroup$


Let $M$ be a complex manifold, $R^nabla$ be the curvature operator for connections $nabla$.
Consider a polynomial function $f:operatorname M_n(mathbbC)tomathbbC$. For the gauge group $operatornameGL_n(mathbbC)$,
if $f(A)=f(gAg^-1)$
where $A in operatorname M_n(mathbbC)$ and $g in operatornameGL_n(mathbbC)$, then $f$ is said to be an invariant polynomial function.
Let $I^k(operatorname M_n(mathbbC))$ be the set of all such polynomials of degree $k$.
Also, $bigoplus_kgeq0I^k(operatorname M_n(mathbbC))=I(operatorname M_n(mathbbC))$.



We shall need $phi_n(A)=det(A)$, $n>1$, and $phi_1(A)=Tr(A)$.



Define a global differential form ($2k$-form)
$f(R^nabla) in mathbbA^2k(M)$.
If we have the de Rham cohomology group $H^2k(M)$, then the Weil homomorphism is defined as the map
$omega:I(operatorname M_n(mathbbC))to bigoplus_kgeq 0H^2k(M)$.



The Chern forms $c_i(R^nabla)=phi_i(fracsqrt-12piR^nabla)$.



For the complex vector bundle $(mathbbE,pi,M)$, where $mathbbE$ is the total space, the Chern classes are defined as $c_i(mathbbE) in H^2k(M)$.



Therefore $c_i(mathbbE)mathrel:=omega(c_i(R^nabla))=[c_i(R^nabla)]$ (de Rham cohomology class).



The Chern forms $c_i(R^nabla) in mathbbA^2i(mathbbE)$.



$mathbbA^2i(mathbbE)$ is sheaf of smooth $mathbbE$-valued $2i$ forms on $M$.



Cohomology groups are very important in geometry for understanding the invariants that can be defined on manifolds. That is, the transformations that keep some special properties of the manifold and which analogous to the gauge transformations in physics.



Chern classes are special type of cohomology classes. If the first Chern class vanishes for a particular manifold, then it must be a Ricci-flat manifold. For example the Calabi–Yau manifolds (they have lots of other special properties, e.g., trivial canonical bundle, etc.).



But what do the higher Chern classes mean?
What uses are those higher cohomology classes corresponding to the higher Chern classes of?










share|cite|improve this question











$endgroup$











  • $begingroup$
    One answer is that if $mathbb E$ is a trivial vector bundle, then all of its Chern classes vanish. Therefore higher Chern classes are obstructions to a bundle being trivial.
    $endgroup$
    – Arun Debray
    Apr 20 at 13:21










  • $begingroup$
    I have edited to fix TeX (for example, use in $in$ rather than epsilon $epsilon$ for set membership), but some of it confuses me. For example, $mathbb A^2i(mathbb E)$ is the sheaf of smooth, $mathbb E$-valued, $2i$ … what? Forms?
    $endgroup$
    – LSpice
    Apr 20 at 18:31










  • $begingroup$
    LSpice , thanks for the corrections in the latex font . And Yes , those are $2i$ forms which I have just edited . Sorry for creating confusions for I did not note those mistakes.
    $endgroup$
    – lap top
    Apr 23 at 6:44















7












$begingroup$


Let $M$ be a complex manifold, $R^nabla$ be the curvature operator for connections $nabla$.
Consider a polynomial function $f:operatorname M_n(mathbbC)tomathbbC$. For the gauge group $operatornameGL_n(mathbbC)$,
if $f(A)=f(gAg^-1)$
where $A in operatorname M_n(mathbbC)$ and $g in operatornameGL_n(mathbbC)$, then $f$ is said to be an invariant polynomial function.
Let $I^k(operatorname M_n(mathbbC))$ be the set of all such polynomials of degree $k$.
Also, $bigoplus_kgeq0I^k(operatorname M_n(mathbbC))=I(operatorname M_n(mathbbC))$.



We shall need $phi_n(A)=det(A)$, $n>1$, and $phi_1(A)=Tr(A)$.



Define a global differential form ($2k$-form)
$f(R^nabla) in mathbbA^2k(M)$.
If we have the de Rham cohomology group $H^2k(M)$, then the Weil homomorphism is defined as the map
$omega:I(operatorname M_n(mathbbC))to bigoplus_kgeq 0H^2k(M)$.



The Chern forms $c_i(R^nabla)=phi_i(fracsqrt-12piR^nabla)$.



For the complex vector bundle $(mathbbE,pi,M)$, where $mathbbE$ is the total space, the Chern classes are defined as $c_i(mathbbE) in H^2k(M)$.



Therefore $c_i(mathbbE)mathrel:=omega(c_i(R^nabla))=[c_i(R^nabla)]$ (de Rham cohomology class).



The Chern forms $c_i(R^nabla) in mathbbA^2i(mathbbE)$.



$mathbbA^2i(mathbbE)$ is sheaf of smooth $mathbbE$-valued $2i$ forms on $M$.



Cohomology groups are very important in geometry for understanding the invariants that can be defined on manifolds. That is, the transformations that keep some special properties of the manifold and which analogous to the gauge transformations in physics.



Chern classes are special type of cohomology classes. If the first Chern class vanishes for a particular manifold, then it must be a Ricci-flat manifold. For example the Calabi–Yau manifolds (they have lots of other special properties, e.g., trivial canonical bundle, etc.).



But what do the higher Chern classes mean?
What uses are those higher cohomology classes corresponding to the higher Chern classes of?










share|cite|improve this question











$endgroup$











  • $begingroup$
    One answer is that if $mathbb E$ is a trivial vector bundle, then all of its Chern classes vanish. Therefore higher Chern classes are obstructions to a bundle being trivial.
    $endgroup$
    – Arun Debray
    Apr 20 at 13:21










  • $begingroup$
    I have edited to fix TeX (for example, use in $in$ rather than epsilon $epsilon$ for set membership), but some of it confuses me. For example, $mathbb A^2i(mathbb E)$ is the sheaf of smooth, $mathbb E$-valued, $2i$ … what? Forms?
    $endgroup$
    – LSpice
    Apr 20 at 18:31










  • $begingroup$
    LSpice , thanks for the corrections in the latex font . And Yes , those are $2i$ forms which I have just edited . Sorry for creating confusions for I did not note those mistakes.
    $endgroup$
    – lap top
    Apr 23 at 6:44













7












7








7


2



$begingroup$


Let $M$ be a complex manifold, $R^nabla$ be the curvature operator for connections $nabla$.
Consider a polynomial function $f:operatorname M_n(mathbbC)tomathbbC$. For the gauge group $operatornameGL_n(mathbbC)$,
if $f(A)=f(gAg^-1)$
where $A in operatorname M_n(mathbbC)$ and $g in operatornameGL_n(mathbbC)$, then $f$ is said to be an invariant polynomial function.
Let $I^k(operatorname M_n(mathbbC))$ be the set of all such polynomials of degree $k$.
Also, $bigoplus_kgeq0I^k(operatorname M_n(mathbbC))=I(operatorname M_n(mathbbC))$.



We shall need $phi_n(A)=det(A)$, $n>1$, and $phi_1(A)=Tr(A)$.



Define a global differential form ($2k$-form)
$f(R^nabla) in mathbbA^2k(M)$.
If we have the de Rham cohomology group $H^2k(M)$, then the Weil homomorphism is defined as the map
$omega:I(operatorname M_n(mathbbC))to bigoplus_kgeq 0H^2k(M)$.



The Chern forms $c_i(R^nabla)=phi_i(fracsqrt-12piR^nabla)$.



For the complex vector bundle $(mathbbE,pi,M)$, where $mathbbE$ is the total space, the Chern classes are defined as $c_i(mathbbE) in H^2k(M)$.



Therefore $c_i(mathbbE)mathrel:=omega(c_i(R^nabla))=[c_i(R^nabla)]$ (de Rham cohomology class).



The Chern forms $c_i(R^nabla) in mathbbA^2i(mathbbE)$.



$mathbbA^2i(mathbbE)$ is sheaf of smooth $mathbbE$-valued $2i$ forms on $M$.



Cohomology groups are very important in geometry for understanding the invariants that can be defined on manifolds. That is, the transformations that keep some special properties of the manifold and which analogous to the gauge transformations in physics.



Chern classes are special type of cohomology classes. If the first Chern class vanishes for a particular manifold, then it must be a Ricci-flat manifold. For example the Calabi–Yau manifolds (they have lots of other special properties, e.g., trivial canonical bundle, etc.).



But what do the higher Chern classes mean?
What uses are those higher cohomology classes corresponding to the higher Chern classes of?










share|cite|improve this question











$endgroup$




Let $M$ be a complex manifold, $R^nabla$ be the curvature operator for connections $nabla$.
Consider a polynomial function $f:operatorname M_n(mathbbC)tomathbbC$. For the gauge group $operatornameGL_n(mathbbC)$,
if $f(A)=f(gAg^-1)$
where $A in operatorname M_n(mathbbC)$ and $g in operatornameGL_n(mathbbC)$, then $f$ is said to be an invariant polynomial function.
Let $I^k(operatorname M_n(mathbbC))$ be the set of all such polynomials of degree $k$.
Also, $bigoplus_kgeq0I^k(operatorname M_n(mathbbC))=I(operatorname M_n(mathbbC))$.



We shall need $phi_n(A)=det(A)$, $n>1$, and $phi_1(A)=Tr(A)$.



Define a global differential form ($2k$-form)
$f(R^nabla) in mathbbA^2k(M)$.
If we have the de Rham cohomology group $H^2k(M)$, then the Weil homomorphism is defined as the map
$omega:I(operatorname M_n(mathbbC))to bigoplus_kgeq 0H^2k(M)$.



The Chern forms $c_i(R^nabla)=phi_i(fracsqrt-12piR^nabla)$.



For the complex vector bundle $(mathbbE,pi,M)$, where $mathbbE$ is the total space, the Chern classes are defined as $c_i(mathbbE) in H^2k(M)$.



Therefore $c_i(mathbbE)mathrel:=omega(c_i(R^nabla))=[c_i(R^nabla)]$ (de Rham cohomology class).



The Chern forms $c_i(R^nabla) in mathbbA^2i(mathbbE)$.



$mathbbA^2i(mathbbE)$ is sheaf of smooth $mathbbE$-valued $2i$ forms on $M$.



Cohomology groups are very important in geometry for understanding the invariants that can be defined on manifolds. That is, the transformations that keep some special properties of the manifold and which analogous to the gauge transformations in physics.



Chern classes are special type of cohomology classes. If the first Chern class vanishes for a particular manifold, then it must be a Ricci-flat manifold. For example the Calabi–Yau manifolds (they have lots of other special properties, e.g., trivial canonical bundle, etc.).



But what do the higher Chern classes mean?
What uses are those higher cohomology classes corresponding to the higher Chern classes of?







complex-geometry cohomology vector-bundles calabi-yau chern-classes






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 23 at 6:41







lap top

















asked Apr 20 at 9:16









lap toplap top

643




643











  • $begingroup$
    One answer is that if $mathbb E$ is a trivial vector bundle, then all of its Chern classes vanish. Therefore higher Chern classes are obstructions to a bundle being trivial.
    $endgroup$
    – Arun Debray
    Apr 20 at 13:21










  • $begingroup$
    I have edited to fix TeX (for example, use in $in$ rather than epsilon $epsilon$ for set membership), but some of it confuses me. For example, $mathbb A^2i(mathbb E)$ is the sheaf of smooth, $mathbb E$-valued, $2i$ … what? Forms?
    $endgroup$
    – LSpice
    Apr 20 at 18:31










  • $begingroup$
    LSpice , thanks for the corrections in the latex font . And Yes , those are $2i$ forms which I have just edited . Sorry for creating confusions for I did not note those mistakes.
    $endgroup$
    – lap top
    Apr 23 at 6:44
















  • $begingroup$
    One answer is that if $mathbb E$ is a trivial vector bundle, then all of its Chern classes vanish. Therefore higher Chern classes are obstructions to a bundle being trivial.
    $endgroup$
    – Arun Debray
    Apr 20 at 13:21










  • $begingroup$
    I have edited to fix TeX (for example, use in $in$ rather than epsilon $epsilon$ for set membership), but some of it confuses me. For example, $mathbb A^2i(mathbb E)$ is the sheaf of smooth, $mathbb E$-valued, $2i$ … what? Forms?
    $endgroup$
    – LSpice
    Apr 20 at 18:31










  • $begingroup$
    LSpice , thanks for the corrections in the latex font . And Yes , those are $2i$ forms which I have just edited . Sorry for creating confusions for I did not note those mistakes.
    $endgroup$
    – lap top
    Apr 23 at 6:44















$begingroup$
One answer is that if $mathbb E$ is a trivial vector bundle, then all of its Chern classes vanish. Therefore higher Chern classes are obstructions to a bundle being trivial.
$endgroup$
– Arun Debray
Apr 20 at 13:21




$begingroup$
One answer is that if $mathbb E$ is a trivial vector bundle, then all of its Chern classes vanish. Therefore higher Chern classes are obstructions to a bundle being trivial.
$endgroup$
– Arun Debray
Apr 20 at 13:21












$begingroup$
I have edited to fix TeX (for example, use in $in$ rather than epsilon $epsilon$ for set membership), but some of it confuses me. For example, $mathbb A^2i(mathbb E)$ is the sheaf of smooth, $mathbb E$-valued, $2i$ … what? Forms?
$endgroup$
– LSpice
Apr 20 at 18:31




$begingroup$
I have edited to fix TeX (for example, use in $in$ rather than epsilon $epsilon$ for set membership), but some of it confuses me. For example, $mathbb A^2i(mathbb E)$ is the sheaf of smooth, $mathbb E$-valued, $2i$ … what? Forms?
$endgroup$
– LSpice
Apr 20 at 18:31












$begingroup$
LSpice , thanks for the corrections in the latex font . And Yes , those are $2i$ forms which I have just edited . Sorry for creating confusions for I did not note those mistakes.
$endgroup$
– lap top
Apr 23 at 6:44




$begingroup$
LSpice , thanks for the corrections in the latex font . And Yes , those are $2i$ forms which I have just edited . Sorry for creating confusions for I did not note those mistakes.
$endgroup$
– lap top
Apr 23 at 6:44










1 Answer
1






active

oldest

votes


















6












$begingroup$

This is a big topic, which should be covered in the union of many standard texts (Chern, Griffiths-Harris, Milnor-Stasheff...). I'll list a few answers off the top of my head.



  1. Suppose that $L$ is the tautological line bundle on the complex projective space plane, then it's clearly not trivial, and neither is $V= Loplus L^-1$. But $c_1(V)=0$, because the trace of curvature is zero for an induced connection. Of course, $V$ is certainly not trivial. So it's natural to look for higher cohomological obstructions (as Arun suggested), e.g. $c_2(V) = -c_1(L)^2not=0$ would work.

  2. For universal bundles on Grassmanians, Chern classes have natural geometric interpretations involving Schubert cycles.

  3. Chern classes come up in formulas expressing answers to natural geometric questions: Gauss-Bonnet, Riemann-Roch, or more general index theorems.





share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328518%2fwhat-is-the-geometrical-meaning-of-higher-chern-forms-and-classes%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6












    $begingroup$

    This is a big topic, which should be covered in the union of many standard texts (Chern, Griffiths-Harris, Milnor-Stasheff...). I'll list a few answers off the top of my head.



    1. Suppose that $L$ is the tautological line bundle on the complex projective space plane, then it's clearly not trivial, and neither is $V= Loplus L^-1$. But $c_1(V)=0$, because the trace of curvature is zero for an induced connection. Of course, $V$ is certainly not trivial. So it's natural to look for higher cohomological obstructions (as Arun suggested), e.g. $c_2(V) = -c_1(L)^2not=0$ would work.

    2. For universal bundles on Grassmanians, Chern classes have natural geometric interpretations involving Schubert cycles.

    3. Chern classes come up in formulas expressing answers to natural geometric questions: Gauss-Bonnet, Riemann-Roch, or more general index theorems.





    share|cite|improve this answer











    $endgroup$

















      6












      $begingroup$

      This is a big topic, which should be covered in the union of many standard texts (Chern, Griffiths-Harris, Milnor-Stasheff...). I'll list a few answers off the top of my head.



      1. Suppose that $L$ is the tautological line bundle on the complex projective space plane, then it's clearly not trivial, and neither is $V= Loplus L^-1$. But $c_1(V)=0$, because the trace of curvature is zero for an induced connection. Of course, $V$ is certainly not trivial. So it's natural to look for higher cohomological obstructions (as Arun suggested), e.g. $c_2(V) = -c_1(L)^2not=0$ would work.

      2. For universal bundles on Grassmanians, Chern classes have natural geometric interpretations involving Schubert cycles.

      3. Chern classes come up in formulas expressing answers to natural geometric questions: Gauss-Bonnet, Riemann-Roch, or more general index theorems.





      share|cite|improve this answer











      $endgroup$















        6












        6








        6





        $begingroup$

        This is a big topic, which should be covered in the union of many standard texts (Chern, Griffiths-Harris, Milnor-Stasheff...). I'll list a few answers off the top of my head.



        1. Suppose that $L$ is the tautological line bundle on the complex projective space plane, then it's clearly not trivial, and neither is $V= Loplus L^-1$. But $c_1(V)=0$, because the trace of curvature is zero for an induced connection. Of course, $V$ is certainly not trivial. So it's natural to look for higher cohomological obstructions (as Arun suggested), e.g. $c_2(V) = -c_1(L)^2not=0$ would work.

        2. For universal bundles on Grassmanians, Chern classes have natural geometric interpretations involving Schubert cycles.

        3. Chern classes come up in formulas expressing answers to natural geometric questions: Gauss-Bonnet, Riemann-Roch, or more general index theorems.





        share|cite|improve this answer











        $endgroup$



        This is a big topic, which should be covered in the union of many standard texts (Chern, Griffiths-Harris, Milnor-Stasheff...). I'll list a few answers off the top of my head.



        1. Suppose that $L$ is the tautological line bundle on the complex projective space plane, then it's clearly not trivial, and neither is $V= Loplus L^-1$. But $c_1(V)=0$, because the trace of curvature is zero for an induced connection. Of course, $V$ is certainly not trivial. So it's natural to look for higher cohomological obstructions (as Arun suggested), e.g. $c_2(V) = -c_1(L)^2not=0$ would work.

        2. For universal bundles on Grassmanians, Chern classes have natural geometric interpretations involving Schubert cycles.

        3. Chern classes come up in formulas expressing answers to natural geometric questions: Gauss-Bonnet, Riemann-Roch, or more general index theorems.






        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 20 at 16:53

























        answered Apr 20 at 14:08









        Donu ArapuraDonu Arapura

        25.5k267126




        25.5k267126



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328518%2fwhat-is-the-geometrical-meaning-of-higher-chern-forms-and-classes%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020