Surely they can fit?Find a heptagon with mirror symmetry that can tile a flat planeMax 4x1 pattern fit within 11x11 areaFit as many overlapping generators as possible

Why didn't Thanos use the Time Stone to stop the Avengers' plan?

Ingress filtering on edge routers and performance concerns

What was the idiom for something that we take without a doubt?

What does $!# mean in Shell scripting?

Using credit/debit card details vs swiping a card in a payment (credit card) terminal

Where have Brexit voters gone?

Is it legal to meet with potential future employers in the UK, whilst visiting from the USA

Why did Jon Snow do this immoral act if he is so honorable?

My employer faked my resume to acquire projects

How should I introduce map drawing to my players?

Did this character show any indication of wanting to rule before S8E6?

Pirate democracy at its finest

Have 1.5% of all nuclear reactors ever built melted down?

Apt - strange requests to d16r8ew072anqo.cloudfront.net:80

Can a person survive on blood in place of water?

Is it truly impossible to tell what a CPU is doing?

Website returning plaintext password

Can I summon an otherworldly creature with the Gate spell without knowing its true name?

Did 20% of US soldiers in Vietnam use heroin, 95% of whom quit afterwards?

Is it rude to call a professor by their last name with no prefix in a non-academic setting?

Do photons bend spacetime or not?

Is there an online tool which supports shared writing?

Can my floppy disk still work without a shutter spring?

How to deal with a colleague who is being aggressive?



Surely they can fit?


Find a heptagon with mirror symmetry that can tile a flat planeMax 4x1 pattern fit within 11x11 areaFit as many overlapping generators as possible













7












$begingroup$


Suppose you have a grid of squares that has even dimensions, with at least one dimension greater than or equal to 4 squares, and from one corner you remove a 1x4 rectangle of those squares



for example:



□□□□□□
□□□□□□
□□□□□□
XXXX□□


Can you fill in that grid using as many copies of the following shapes as you like?



(Each shape can be rotated any of the four ways, and can be flipped/mirrored)



□□
□□



□□
□□



□□□□
□□□□


If you can, provide an example solution. If you cannot, then you should provide a reasonable argument to why it can't be done.










share|improve this question









$endgroup$
















    7












    $begingroup$


    Suppose you have a grid of squares that has even dimensions, with at least one dimension greater than or equal to 4 squares, and from one corner you remove a 1x4 rectangle of those squares



    for example:



    □□□□□□
    □□□□□□
    □□□□□□
    XXXX□□


    Can you fill in that grid using as many copies of the following shapes as you like?



    (Each shape can be rotated any of the four ways, and can be flipped/mirrored)



    □□
    □□



    □□
    □□



    □□□□
    □□□□


    If you can, provide an example solution. If you cannot, then you should provide a reasonable argument to why it can't be done.










    share|improve this question









    $endgroup$














      7












      7








      7





      $begingroup$


      Suppose you have a grid of squares that has even dimensions, with at least one dimension greater than or equal to 4 squares, and from one corner you remove a 1x4 rectangle of those squares



      for example:



      □□□□□□
      □□□□□□
      □□□□□□
      XXXX□□


      Can you fill in that grid using as many copies of the following shapes as you like?



      (Each shape can be rotated any of the four ways, and can be flipped/mirrored)



      □□
      □□



      □□
      □□



      □□□□
      □□□□


      If you can, provide an example solution. If you cannot, then you should provide a reasonable argument to why it can't be done.










      share|improve this question









      $endgroup$




      Suppose you have a grid of squares that has even dimensions, with at least one dimension greater than or equal to 4 squares, and from one corner you remove a 1x4 rectangle of those squares



      for example:



      □□□□□□
      □□□□□□
      □□□□□□
      XXXX□□


      Can you fill in that grid using as many copies of the following shapes as you like?



      (Each shape can be rotated any of the four ways, and can be flipped/mirrored)



      □□
      □□



      □□
      □□



      □□□□
      □□□□


      If you can, provide an example solution. If you cannot, then you should provide a reasonable argument to why it can't be done.







      tiling






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked May 11 at 23:50









      micsthepickmicsthepick

      2,52311128




      2,52311128




















          1 Answer
          1






          active

          oldest

          votes


















          9












          $begingroup$

          No, you cannot:




          Color the grid like this.

          enter image description here


          Since the grid (before removal of the four cells) has even dimensions, it is made up of 2x2 blocks with each color once. So each color appears the same number of times.


          All of the given shapes will always cover the same number of squares of each color: the first two cover one of each, and the last covers two of each. But after marking off the unused cells, the grid has more red and blue cells than yellow and green. So you can't cover the grid perfectly.







          share|improve this answer









          $endgroup$












          • $begingroup$
            that’s pretty much my reasoning!
            $endgroup$
            – micsthepick
            May 12 at 1:55










          • $begingroup$
            Danf Deus actually gave an answer! For the first time in forever Okay in all seriousness, this is pretty amazing. Also the first post by micsthepicks I've seenin a while. Good to see you again @micsthepick
            $endgroup$
            – North
            May 12 at 5:03











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "559"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f83856%2fsurely-they-can-fit%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          9












          $begingroup$

          No, you cannot:




          Color the grid like this.

          enter image description here


          Since the grid (before removal of the four cells) has even dimensions, it is made up of 2x2 blocks with each color once. So each color appears the same number of times.


          All of the given shapes will always cover the same number of squares of each color: the first two cover one of each, and the last covers two of each. But after marking off the unused cells, the grid has more red and blue cells than yellow and green. So you can't cover the grid perfectly.







          share|improve this answer









          $endgroup$












          • $begingroup$
            that’s pretty much my reasoning!
            $endgroup$
            – micsthepick
            May 12 at 1:55










          • $begingroup$
            Danf Deus actually gave an answer! For the first time in forever Okay in all seriousness, this is pretty amazing. Also the first post by micsthepicks I've seenin a while. Good to see you again @micsthepick
            $endgroup$
            – North
            May 12 at 5:03















          9












          $begingroup$

          No, you cannot:




          Color the grid like this.

          enter image description here


          Since the grid (before removal of the four cells) has even dimensions, it is made up of 2x2 blocks with each color once. So each color appears the same number of times.


          All of the given shapes will always cover the same number of squares of each color: the first two cover one of each, and the last covers two of each. But after marking off the unused cells, the grid has more red and blue cells than yellow and green. So you can't cover the grid perfectly.







          share|improve this answer









          $endgroup$












          • $begingroup$
            that’s pretty much my reasoning!
            $endgroup$
            – micsthepick
            May 12 at 1:55










          • $begingroup$
            Danf Deus actually gave an answer! For the first time in forever Okay in all seriousness, this is pretty amazing. Also the first post by micsthepicks I've seenin a while. Good to see you again @micsthepick
            $endgroup$
            – North
            May 12 at 5:03













          9












          9








          9





          $begingroup$

          No, you cannot:




          Color the grid like this.

          enter image description here


          Since the grid (before removal of the four cells) has even dimensions, it is made up of 2x2 blocks with each color once. So each color appears the same number of times.


          All of the given shapes will always cover the same number of squares of each color: the first two cover one of each, and the last covers two of each. But after marking off the unused cells, the grid has more red and blue cells than yellow and green. So you can't cover the grid perfectly.







          share|improve this answer









          $endgroup$



          No, you cannot:




          Color the grid like this.

          enter image description here


          Since the grid (before removal of the four cells) has even dimensions, it is made up of 2x2 blocks with each color once. So each color appears the same number of times.


          All of the given shapes will always cover the same number of squares of each color: the first two cover one of each, and the last covers two of each. But after marking off the unused cells, the grid has more red and blue cells than yellow and green. So you can't cover the grid perfectly.








          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered May 12 at 1:42









          DeusoviDeusovi

          65k6223282




          65k6223282











          • $begingroup$
            that’s pretty much my reasoning!
            $endgroup$
            – micsthepick
            May 12 at 1:55










          • $begingroup$
            Danf Deus actually gave an answer! For the first time in forever Okay in all seriousness, this is pretty amazing. Also the first post by micsthepicks I've seenin a while. Good to see you again @micsthepick
            $endgroup$
            – North
            May 12 at 5:03
















          • $begingroup$
            that’s pretty much my reasoning!
            $endgroup$
            – micsthepick
            May 12 at 1:55










          • $begingroup$
            Danf Deus actually gave an answer! For the first time in forever Okay in all seriousness, this is pretty amazing. Also the first post by micsthepicks I've seenin a while. Good to see you again @micsthepick
            $endgroup$
            – North
            May 12 at 5:03















          $begingroup$
          that’s pretty much my reasoning!
          $endgroup$
          – micsthepick
          May 12 at 1:55




          $begingroup$
          that’s pretty much my reasoning!
          $endgroup$
          – micsthepick
          May 12 at 1:55












          $begingroup$
          Danf Deus actually gave an answer! For the first time in forever Okay in all seriousness, this is pretty amazing. Also the first post by micsthepicks I've seenin a while. Good to see you again @micsthepick
          $endgroup$
          – North
          May 12 at 5:03




          $begingroup$
          Danf Deus actually gave an answer! For the first time in forever Okay in all seriousness, this is pretty amazing. Also the first post by micsthepicks I've seenin a while. Good to see you again @micsthepick
          $endgroup$
          – North
          May 12 at 5:03

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Puzzling Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f83856%2fsurely-they-can-fit%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

          Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

          Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020