Why do we assume the potential is independent of time in the Schrödinger equation?Time-Dependent Potentials in Quantum MechanicsSchrödinger Equation: Eigenmomentum?Bound states of the Schrödinger equation on $S^1times mathbbR^3$An operator on the other side of the Schrödinger equationWhy isn't the Time-Independent Schrödinger Equation an equation of motion?How can a solution of the time-independent Schrödinger equation evolve in space?Time dependent and time independent Schrödinger equationsHow is the Schrödinger equation solved for time varying curved potential barriers?2D time-independent Schrödinger EquationWhy do you need symmetric and antisymmetric solutions of the time-independent Schrödinger Equation by a given potential $V(x)$?Derivation of time independent Schrödinger equation

Is it true that cut time means "play twice as fast as written"?

Why aren't space telescopes put in GEO?

How to cut a climbing rope?

Did 20% of US soldiers in Vietnam use heroin, 95% of whom quit afterwards?

How to respond to upset student?

What does $!# mean in Shell scripting?

Website returning plaintext password

Is it truly impossible to tell what a CPU is doing?

A steel cutting sword?

How to let other coworkers know that I don't share my coworker's political views?

USPS Back Room - Trespassing?

Is the Unsullied name meant to be ironic? How did it come to be?

Have 1.5% of all nuclear reactors ever built melted down?

Why would Ryanair allow me to book this journey through a third party, but not through their own website?

Can I connect my older mathematica front-end to the free wolfram engine?

Count rotary dial pulses in a phone number (including letters)

First Match - awk

Construct a word ladder

Why do most published works in medical imaging try to reduce false positives?

The art of clickbait captions

How to attach cable mounting points to a bicycle frame?

Specific alignment within beginalign environment

My players want to grind XP but we're using milestone advancement

Should one buy new hardware after a system compromise?



Why do we assume the potential is independent of time in the Schrödinger equation?


Time-Dependent Potentials in Quantum MechanicsSchrödinger Equation: Eigenmomentum?Bound states of the Schrödinger equation on $S^1times mathbbR^3$An operator on the other side of the Schrödinger equationWhy isn't the Time-Independent Schrödinger Equation an equation of motion?How can a solution of the time-independent Schrödinger equation evolve in space?Time dependent and time independent Schrödinger equationsHow is the Schrödinger equation solved for time varying curved potential barriers?2D time-independent Schrödinger EquationWhy do you need symmetric and antisymmetric solutions of the time-independent Schrödinger Equation by a given potential $V(x)$?Derivation of time independent Schrödinger equation













4












$begingroup$


In just about every text I read (online or in paper), when they handle the time-dependent Schrödinger Equation, I see something along the lines of "we always assume the potential is independent of time." Why is this? Are there not plenty of circumstances when this isn't valid? Aren't most experiments done with varying potentials (NMR for example, the magnetic field, which affects the potential, is changing in time)? Is this assumption made in textbooks just for pedagogical reasons, to make life easier?



If we don't make this assumption, then it seems to me that the Schrödinger equation is no longer separable and we can no longer just apply the time-evolution operator as is usually done (and the time-independent equation is no longer valid).



Perhaps tangential to the main question but: Also, if we want to solve it numerically, it seems to me we also can't simplify using split-step Fourier transforms or into a form handled by Runge-Kutta. Is this correct? I'm especially interested in exploring the numerical analysis, but I guess I should post that question in the scientific computing SE.



Of course, when I say "potential" I mean $Vleft(vec r, tright)$ in the equation
beginequation
ihbarfracpartialpartial t Psileft(vec r, tright) = left[frac-hbar^22mnabla^2+V(vec r, t)right]Psileft(vec r, tright)
endequation

and the assumption whose justification I don't understand is $Vleft(vec r, tright)=Vleft(vec rright)$.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Out of curiosity, what does "tangential to another question" mean? Is it just a fancy way to say it is related, or does it mean the relation between the two questions is specific and if so how?
    $endgroup$
    – Exocytosis
    May 12 at 5:34











  • $begingroup$
    I just mean the question about the numerical analysis is related to my main question superficially. I wanted to ask it but I'm not sure this is the right place -- I would expect this is the right place for the rest of the questions, though.
    $endgroup$
    – FunctionalDefect
    May 12 at 5:38










  • $begingroup$
    Related: en.wikipedia.org/wiki/Dyson_series
    $endgroup$
    – Feynmans Out for Grumpy Cat
    May 12 at 5:44






  • 1




    $begingroup$
    Related (maybe even duplicate): physics.stackexchange.com/q/17768
    $endgroup$
    – user191954
    May 12 at 6:03
















4












$begingroup$


In just about every text I read (online or in paper), when they handle the time-dependent Schrödinger Equation, I see something along the lines of "we always assume the potential is independent of time." Why is this? Are there not plenty of circumstances when this isn't valid? Aren't most experiments done with varying potentials (NMR for example, the magnetic field, which affects the potential, is changing in time)? Is this assumption made in textbooks just for pedagogical reasons, to make life easier?



If we don't make this assumption, then it seems to me that the Schrödinger equation is no longer separable and we can no longer just apply the time-evolution operator as is usually done (and the time-independent equation is no longer valid).



Perhaps tangential to the main question but: Also, if we want to solve it numerically, it seems to me we also can't simplify using split-step Fourier transforms or into a form handled by Runge-Kutta. Is this correct? I'm especially interested in exploring the numerical analysis, but I guess I should post that question in the scientific computing SE.



Of course, when I say "potential" I mean $Vleft(vec r, tright)$ in the equation
beginequation
ihbarfracpartialpartial t Psileft(vec r, tright) = left[frac-hbar^22mnabla^2+V(vec r, t)right]Psileft(vec r, tright)
endequation

and the assumption whose justification I don't understand is $Vleft(vec r, tright)=Vleft(vec rright)$.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Out of curiosity, what does "tangential to another question" mean? Is it just a fancy way to say it is related, or does it mean the relation between the two questions is specific and if so how?
    $endgroup$
    – Exocytosis
    May 12 at 5:34











  • $begingroup$
    I just mean the question about the numerical analysis is related to my main question superficially. I wanted to ask it but I'm not sure this is the right place -- I would expect this is the right place for the rest of the questions, though.
    $endgroup$
    – FunctionalDefect
    May 12 at 5:38










  • $begingroup$
    Related: en.wikipedia.org/wiki/Dyson_series
    $endgroup$
    – Feynmans Out for Grumpy Cat
    May 12 at 5:44






  • 1




    $begingroup$
    Related (maybe even duplicate): physics.stackexchange.com/q/17768
    $endgroup$
    – user191954
    May 12 at 6:03














4












4








4





$begingroup$


In just about every text I read (online or in paper), when they handle the time-dependent Schrödinger Equation, I see something along the lines of "we always assume the potential is independent of time." Why is this? Are there not plenty of circumstances when this isn't valid? Aren't most experiments done with varying potentials (NMR for example, the magnetic field, which affects the potential, is changing in time)? Is this assumption made in textbooks just for pedagogical reasons, to make life easier?



If we don't make this assumption, then it seems to me that the Schrödinger equation is no longer separable and we can no longer just apply the time-evolution operator as is usually done (and the time-independent equation is no longer valid).



Perhaps tangential to the main question but: Also, if we want to solve it numerically, it seems to me we also can't simplify using split-step Fourier transforms or into a form handled by Runge-Kutta. Is this correct? I'm especially interested in exploring the numerical analysis, but I guess I should post that question in the scientific computing SE.



Of course, when I say "potential" I mean $Vleft(vec r, tright)$ in the equation
beginequation
ihbarfracpartialpartial t Psileft(vec r, tright) = left[frac-hbar^22mnabla^2+V(vec r, t)right]Psileft(vec r, tright)
endequation

and the assumption whose justification I don't understand is $Vleft(vec r, tright)=Vleft(vec rright)$.










share|cite|improve this question











$endgroup$




In just about every text I read (online or in paper), when they handle the time-dependent Schrödinger Equation, I see something along the lines of "we always assume the potential is independent of time." Why is this? Are there not plenty of circumstances when this isn't valid? Aren't most experiments done with varying potentials (NMR for example, the magnetic field, which affects the potential, is changing in time)? Is this assumption made in textbooks just for pedagogical reasons, to make life easier?



If we don't make this assumption, then it seems to me that the Schrödinger equation is no longer separable and we can no longer just apply the time-evolution operator as is usually done (and the time-independent equation is no longer valid).



Perhaps tangential to the main question but: Also, if we want to solve it numerically, it seems to me we also can't simplify using split-step Fourier transforms or into a form handled by Runge-Kutta. Is this correct? I'm especially interested in exploring the numerical analysis, but I guess I should post that question in the scientific computing SE.



Of course, when I say "potential" I mean $Vleft(vec r, tright)$ in the equation
beginequation
ihbarfracpartialpartial t Psileft(vec r, tright) = left[frac-hbar^22mnabla^2+V(vec r, t)right]Psileft(vec r, tright)
endequation

and the assumption whose justification I don't understand is $Vleft(vec r, tright)=Vleft(vec rright)$.







quantum-mechanics potential schroedinger-equation time






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 12 at 7:17









Nat

3,77242033




3,77242033










asked May 12 at 5:21









FunctionalDefectFunctionalDefect

234




234











  • $begingroup$
    Out of curiosity, what does "tangential to another question" mean? Is it just a fancy way to say it is related, or does it mean the relation between the two questions is specific and if so how?
    $endgroup$
    – Exocytosis
    May 12 at 5:34











  • $begingroup$
    I just mean the question about the numerical analysis is related to my main question superficially. I wanted to ask it but I'm not sure this is the right place -- I would expect this is the right place for the rest of the questions, though.
    $endgroup$
    – FunctionalDefect
    May 12 at 5:38










  • $begingroup$
    Related: en.wikipedia.org/wiki/Dyson_series
    $endgroup$
    – Feynmans Out for Grumpy Cat
    May 12 at 5:44






  • 1




    $begingroup$
    Related (maybe even duplicate): physics.stackexchange.com/q/17768
    $endgroup$
    – user191954
    May 12 at 6:03

















  • $begingroup$
    Out of curiosity, what does "tangential to another question" mean? Is it just a fancy way to say it is related, or does it mean the relation between the two questions is specific and if so how?
    $endgroup$
    – Exocytosis
    May 12 at 5:34











  • $begingroup$
    I just mean the question about the numerical analysis is related to my main question superficially. I wanted to ask it but I'm not sure this is the right place -- I would expect this is the right place for the rest of the questions, though.
    $endgroup$
    – FunctionalDefect
    May 12 at 5:38










  • $begingroup$
    Related: en.wikipedia.org/wiki/Dyson_series
    $endgroup$
    – Feynmans Out for Grumpy Cat
    May 12 at 5:44






  • 1




    $begingroup$
    Related (maybe even duplicate): physics.stackexchange.com/q/17768
    $endgroup$
    – user191954
    May 12 at 6:03
















$begingroup$
Out of curiosity, what does "tangential to another question" mean? Is it just a fancy way to say it is related, or does it mean the relation between the two questions is specific and if so how?
$endgroup$
– Exocytosis
May 12 at 5:34





$begingroup$
Out of curiosity, what does "tangential to another question" mean? Is it just a fancy way to say it is related, or does it mean the relation between the two questions is specific and if so how?
$endgroup$
– Exocytosis
May 12 at 5:34













$begingroup$
I just mean the question about the numerical analysis is related to my main question superficially. I wanted to ask it but I'm not sure this is the right place -- I would expect this is the right place for the rest of the questions, though.
$endgroup$
– FunctionalDefect
May 12 at 5:38




$begingroup$
I just mean the question about the numerical analysis is related to my main question superficially. I wanted to ask it but I'm not sure this is the right place -- I would expect this is the right place for the rest of the questions, though.
$endgroup$
– FunctionalDefect
May 12 at 5:38












$begingroup$
Related: en.wikipedia.org/wiki/Dyson_series
$endgroup$
– Feynmans Out for Grumpy Cat
May 12 at 5:44




$begingroup$
Related: en.wikipedia.org/wiki/Dyson_series
$endgroup$
– Feynmans Out for Grumpy Cat
May 12 at 5:44




1




1




$begingroup$
Related (maybe even duplicate): physics.stackexchange.com/q/17768
$endgroup$
– user191954
May 12 at 6:03





$begingroup$
Related (maybe even duplicate): physics.stackexchange.com/q/17768
$endgroup$
– user191954
May 12 at 6:03











1 Answer
1






active

oldest

votes


















3












$begingroup$

There are plenty of situations where the potential depends on time. The core reason you haven't seen them is likely that you haven't been looking in the right places.



However, that said, there is indeed a clear separation between the static and the time-dependent components of the potential. For the vast majority of experiments where we use a time-dependent probe to interact with the system, the probe is extremely weak (by several orders of magnitude) when compared to the natural hamiltonian of the system. This means that it is best treated using perturbation theory, so that the best strategy is to solve the time-independent Schrödinger equation for the dominating structural part of the hamiltonian (which generally doesn't depend on time) and then worry about the probe.



Moreover, a huge number of experiments are done, for various reasons, using oscillating potentials which are very close to monochromatic. For those potentials, it is often possible to move to a 'rotating frame' in which the interaction hamiltonian effectively becomes static, which makes the analysis much simpler.



Still, there's plenty of situations where none of this is valid, particularly if the probe is strong enough to get out of the perturbative regime. But even then, it is still important to have the structure of the system (i.e. the eigenstates of the interaction-free hamiltonian) at hand, as they are generally important parts of the analysis, even when they no longer play an explicit role in solving the TDSE.



If you want a deeper exploration of these themes, I recommend David Tannor's Quantum Mechanics: A Time-Dependent Perspective.




And finally,




Also, if we want to solve it numerically, it seems to me we also can't simplify using split-step Fourier transforms or into a form handled by Runge-Kutta. Is this correct?




No, it's not. Time-dependent potentials are perfectly solvable using the standard numerical methods. They might need a small bit of fine-tuning, but nothing more.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Right, of course I had forgotten about studying time-dependent perturbations. Could you name some examples where the probe would be out of the perturbative regime (or just a system that might be studied without perturbation theory)? As for numerical methods, I do not see how to use e.g. Runge-Kutta, since my understanding is that RK4 solves equations of the form $partial_t Psi = f(x,Psi)$ but now we have $f(x,t,Psi)$ since $V$ depends on $t$ in addition to $x$.
    $endgroup$
    – FunctionalDefect
    May 12 at 19:10






  • 1




    $begingroup$
    Good examples from my neck of the woods are high-order harmonic generation and above-threshold ionization in the tunnelling regime. Doubtless there are others.
    $endgroup$
    – Emilio Pisanty
    May 12 at 19:17










  • $begingroup$
    Regarding numerical methods: are you seriously doubting that the TDSE can be solved numerically? If you've only been shown a restricted class of Runge-Kutta solvers, then go look for a text that deals with broader variants of the method. This google search is a good starting point - the zoo of methods for time-dependent QM is far too broad to mention here. Pretty much every method here, other than eigenvalue methods, can be used for time-dependent problems.
    $endgroup$
    – Emilio Pisanty
    May 12 at 19:23











  • $begingroup$
    No, of course I am not doubting it can be solved numerically; just don't understand how the standard methods apply, which to me amounts to RK (I have very limited numerical PDE experience). Thanks for the resources.
    $endgroup$
    – FunctionalDefect
    May 12 at 19:38











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f479497%2fwhy-do-we-assume-the-potential-is-independent-of-time-in-the-schr%25c3%25b6dinger-equatio%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

There are plenty of situations where the potential depends on time. The core reason you haven't seen them is likely that you haven't been looking in the right places.



However, that said, there is indeed a clear separation between the static and the time-dependent components of the potential. For the vast majority of experiments where we use a time-dependent probe to interact with the system, the probe is extremely weak (by several orders of magnitude) when compared to the natural hamiltonian of the system. This means that it is best treated using perturbation theory, so that the best strategy is to solve the time-independent Schrödinger equation for the dominating structural part of the hamiltonian (which generally doesn't depend on time) and then worry about the probe.



Moreover, a huge number of experiments are done, for various reasons, using oscillating potentials which are very close to monochromatic. For those potentials, it is often possible to move to a 'rotating frame' in which the interaction hamiltonian effectively becomes static, which makes the analysis much simpler.



Still, there's plenty of situations where none of this is valid, particularly if the probe is strong enough to get out of the perturbative regime. But even then, it is still important to have the structure of the system (i.e. the eigenstates of the interaction-free hamiltonian) at hand, as they are generally important parts of the analysis, even when they no longer play an explicit role in solving the TDSE.



If you want a deeper exploration of these themes, I recommend David Tannor's Quantum Mechanics: A Time-Dependent Perspective.




And finally,




Also, if we want to solve it numerically, it seems to me we also can't simplify using split-step Fourier transforms or into a form handled by Runge-Kutta. Is this correct?




No, it's not. Time-dependent potentials are perfectly solvable using the standard numerical methods. They might need a small bit of fine-tuning, but nothing more.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Right, of course I had forgotten about studying time-dependent perturbations. Could you name some examples where the probe would be out of the perturbative regime (or just a system that might be studied without perturbation theory)? As for numerical methods, I do not see how to use e.g. Runge-Kutta, since my understanding is that RK4 solves equations of the form $partial_t Psi = f(x,Psi)$ but now we have $f(x,t,Psi)$ since $V$ depends on $t$ in addition to $x$.
    $endgroup$
    – FunctionalDefect
    May 12 at 19:10






  • 1




    $begingroup$
    Good examples from my neck of the woods are high-order harmonic generation and above-threshold ionization in the tunnelling regime. Doubtless there are others.
    $endgroup$
    – Emilio Pisanty
    May 12 at 19:17










  • $begingroup$
    Regarding numerical methods: are you seriously doubting that the TDSE can be solved numerically? If you've only been shown a restricted class of Runge-Kutta solvers, then go look for a text that deals with broader variants of the method. This google search is a good starting point - the zoo of methods for time-dependent QM is far too broad to mention here. Pretty much every method here, other than eigenvalue methods, can be used for time-dependent problems.
    $endgroup$
    – Emilio Pisanty
    May 12 at 19:23











  • $begingroup$
    No, of course I am not doubting it can be solved numerically; just don't understand how the standard methods apply, which to me amounts to RK (I have very limited numerical PDE experience). Thanks for the resources.
    $endgroup$
    – FunctionalDefect
    May 12 at 19:38















3












$begingroup$

There are plenty of situations where the potential depends on time. The core reason you haven't seen them is likely that you haven't been looking in the right places.



However, that said, there is indeed a clear separation between the static and the time-dependent components of the potential. For the vast majority of experiments where we use a time-dependent probe to interact with the system, the probe is extremely weak (by several orders of magnitude) when compared to the natural hamiltonian of the system. This means that it is best treated using perturbation theory, so that the best strategy is to solve the time-independent Schrödinger equation for the dominating structural part of the hamiltonian (which generally doesn't depend on time) and then worry about the probe.



Moreover, a huge number of experiments are done, for various reasons, using oscillating potentials which are very close to monochromatic. For those potentials, it is often possible to move to a 'rotating frame' in which the interaction hamiltonian effectively becomes static, which makes the analysis much simpler.



Still, there's plenty of situations where none of this is valid, particularly if the probe is strong enough to get out of the perturbative regime. But even then, it is still important to have the structure of the system (i.e. the eigenstates of the interaction-free hamiltonian) at hand, as they are generally important parts of the analysis, even when they no longer play an explicit role in solving the TDSE.



If you want a deeper exploration of these themes, I recommend David Tannor's Quantum Mechanics: A Time-Dependent Perspective.




And finally,




Also, if we want to solve it numerically, it seems to me we also can't simplify using split-step Fourier transforms or into a form handled by Runge-Kutta. Is this correct?




No, it's not. Time-dependent potentials are perfectly solvable using the standard numerical methods. They might need a small bit of fine-tuning, but nothing more.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Right, of course I had forgotten about studying time-dependent perturbations. Could you name some examples where the probe would be out of the perturbative regime (or just a system that might be studied without perturbation theory)? As for numerical methods, I do not see how to use e.g. Runge-Kutta, since my understanding is that RK4 solves equations of the form $partial_t Psi = f(x,Psi)$ but now we have $f(x,t,Psi)$ since $V$ depends on $t$ in addition to $x$.
    $endgroup$
    – FunctionalDefect
    May 12 at 19:10






  • 1




    $begingroup$
    Good examples from my neck of the woods are high-order harmonic generation and above-threshold ionization in the tunnelling regime. Doubtless there are others.
    $endgroup$
    – Emilio Pisanty
    May 12 at 19:17










  • $begingroup$
    Regarding numerical methods: are you seriously doubting that the TDSE can be solved numerically? If you've only been shown a restricted class of Runge-Kutta solvers, then go look for a text that deals with broader variants of the method. This google search is a good starting point - the zoo of methods for time-dependent QM is far too broad to mention here. Pretty much every method here, other than eigenvalue methods, can be used for time-dependent problems.
    $endgroup$
    – Emilio Pisanty
    May 12 at 19:23











  • $begingroup$
    No, of course I am not doubting it can be solved numerically; just don't understand how the standard methods apply, which to me amounts to RK (I have very limited numerical PDE experience). Thanks for the resources.
    $endgroup$
    – FunctionalDefect
    May 12 at 19:38













3












3








3





$begingroup$

There are plenty of situations where the potential depends on time. The core reason you haven't seen them is likely that you haven't been looking in the right places.



However, that said, there is indeed a clear separation between the static and the time-dependent components of the potential. For the vast majority of experiments where we use a time-dependent probe to interact with the system, the probe is extremely weak (by several orders of magnitude) when compared to the natural hamiltonian of the system. This means that it is best treated using perturbation theory, so that the best strategy is to solve the time-independent Schrödinger equation for the dominating structural part of the hamiltonian (which generally doesn't depend on time) and then worry about the probe.



Moreover, a huge number of experiments are done, for various reasons, using oscillating potentials which are very close to monochromatic. For those potentials, it is often possible to move to a 'rotating frame' in which the interaction hamiltonian effectively becomes static, which makes the analysis much simpler.



Still, there's plenty of situations where none of this is valid, particularly if the probe is strong enough to get out of the perturbative regime. But even then, it is still important to have the structure of the system (i.e. the eigenstates of the interaction-free hamiltonian) at hand, as they are generally important parts of the analysis, even when they no longer play an explicit role in solving the TDSE.



If you want a deeper exploration of these themes, I recommend David Tannor's Quantum Mechanics: A Time-Dependent Perspective.




And finally,




Also, if we want to solve it numerically, it seems to me we also can't simplify using split-step Fourier transforms or into a form handled by Runge-Kutta. Is this correct?




No, it's not. Time-dependent potentials are perfectly solvable using the standard numerical methods. They might need a small bit of fine-tuning, but nothing more.






share|cite|improve this answer











$endgroup$



There are plenty of situations where the potential depends on time. The core reason you haven't seen them is likely that you haven't been looking in the right places.



However, that said, there is indeed a clear separation between the static and the time-dependent components of the potential. For the vast majority of experiments where we use a time-dependent probe to interact with the system, the probe is extremely weak (by several orders of magnitude) when compared to the natural hamiltonian of the system. This means that it is best treated using perturbation theory, so that the best strategy is to solve the time-independent Schrödinger equation for the dominating structural part of the hamiltonian (which generally doesn't depend on time) and then worry about the probe.



Moreover, a huge number of experiments are done, for various reasons, using oscillating potentials which are very close to monochromatic. For those potentials, it is often possible to move to a 'rotating frame' in which the interaction hamiltonian effectively becomes static, which makes the analysis much simpler.



Still, there's plenty of situations where none of this is valid, particularly if the probe is strong enough to get out of the perturbative regime. But even then, it is still important to have the structure of the system (i.e. the eigenstates of the interaction-free hamiltonian) at hand, as they are generally important parts of the analysis, even when they no longer play an explicit role in solving the TDSE.



If you want a deeper exploration of these themes, I recommend David Tannor's Quantum Mechanics: A Time-Dependent Perspective.




And finally,




Also, if we want to solve it numerically, it seems to me we also can't simplify using split-step Fourier transforms or into a form handled by Runge-Kutta. Is this correct?




No, it's not. Time-dependent potentials are perfectly solvable using the standard numerical methods. They might need a small bit of fine-tuning, but nothing more.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited May 12 at 6:16

























answered May 12 at 6:09









Emilio PisantyEmilio Pisanty

88.3k23223455




88.3k23223455











  • $begingroup$
    Right, of course I had forgotten about studying time-dependent perturbations. Could you name some examples where the probe would be out of the perturbative regime (or just a system that might be studied without perturbation theory)? As for numerical methods, I do not see how to use e.g. Runge-Kutta, since my understanding is that RK4 solves equations of the form $partial_t Psi = f(x,Psi)$ but now we have $f(x,t,Psi)$ since $V$ depends on $t$ in addition to $x$.
    $endgroup$
    – FunctionalDefect
    May 12 at 19:10






  • 1




    $begingroup$
    Good examples from my neck of the woods are high-order harmonic generation and above-threshold ionization in the tunnelling regime. Doubtless there are others.
    $endgroup$
    – Emilio Pisanty
    May 12 at 19:17










  • $begingroup$
    Regarding numerical methods: are you seriously doubting that the TDSE can be solved numerically? If you've only been shown a restricted class of Runge-Kutta solvers, then go look for a text that deals with broader variants of the method. This google search is a good starting point - the zoo of methods for time-dependent QM is far too broad to mention here. Pretty much every method here, other than eigenvalue methods, can be used for time-dependent problems.
    $endgroup$
    – Emilio Pisanty
    May 12 at 19:23











  • $begingroup$
    No, of course I am not doubting it can be solved numerically; just don't understand how the standard methods apply, which to me amounts to RK (I have very limited numerical PDE experience). Thanks for the resources.
    $endgroup$
    – FunctionalDefect
    May 12 at 19:38
















  • $begingroup$
    Right, of course I had forgotten about studying time-dependent perturbations. Could you name some examples where the probe would be out of the perturbative regime (or just a system that might be studied without perturbation theory)? As for numerical methods, I do not see how to use e.g. Runge-Kutta, since my understanding is that RK4 solves equations of the form $partial_t Psi = f(x,Psi)$ but now we have $f(x,t,Psi)$ since $V$ depends on $t$ in addition to $x$.
    $endgroup$
    – FunctionalDefect
    May 12 at 19:10






  • 1




    $begingroup$
    Good examples from my neck of the woods are high-order harmonic generation and above-threshold ionization in the tunnelling regime. Doubtless there are others.
    $endgroup$
    – Emilio Pisanty
    May 12 at 19:17










  • $begingroup$
    Regarding numerical methods: are you seriously doubting that the TDSE can be solved numerically? If you've only been shown a restricted class of Runge-Kutta solvers, then go look for a text that deals with broader variants of the method. This google search is a good starting point - the zoo of methods for time-dependent QM is far too broad to mention here. Pretty much every method here, other than eigenvalue methods, can be used for time-dependent problems.
    $endgroup$
    – Emilio Pisanty
    May 12 at 19:23











  • $begingroup$
    No, of course I am not doubting it can be solved numerically; just don't understand how the standard methods apply, which to me amounts to RK (I have very limited numerical PDE experience). Thanks for the resources.
    $endgroup$
    – FunctionalDefect
    May 12 at 19:38















$begingroup$
Right, of course I had forgotten about studying time-dependent perturbations. Could you name some examples where the probe would be out of the perturbative regime (or just a system that might be studied without perturbation theory)? As for numerical methods, I do not see how to use e.g. Runge-Kutta, since my understanding is that RK4 solves equations of the form $partial_t Psi = f(x,Psi)$ but now we have $f(x,t,Psi)$ since $V$ depends on $t$ in addition to $x$.
$endgroup$
– FunctionalDefect
May 12 at 19:10




$begingroup$
Right, of course I had forgotten about studying time-dependent perturbations. Could you name some examples where the probe would be out of the perturbative regime (or just a system that might be studied without perturbation theory)? As for numerical methods, I do not see how to use e.g. Runge-Kutta, since my understanding is that RK4 solves equations of the form $partial_t Psi = f(x,Psi)$ but now we have $f(x,t,Psi)$ since $V$ depends on $t$ in addition to $x$.
$endgroup$
– FunctionalDefect
May 12 at 19:10




1




1




$begingroup$
Good examples from my neck of the woods are high-order harmonic generation and above-threshold ionization in the tunnelling regime. Doubtless there are others.
$endgroup$
– Emilio Pisanty
May 12 at 19:17




$begingroup$
Good examples from my neck of the woods are high-order harmonic generation and above-threshold ionization in the tunnelling regime. Doubtless there are others.
$endgroup$
– Emilio Pisanty
May 12 at 19:17












$begingroup$
Regarding numerical methods: are you seriously doubting that the TDSE can be solved numerically? If you've only been shown a restricted class of Runge-Kutta solvers, then go look for a text that deals with broader variants of the method. This google search is a good starting point - the zoo of methods for time-dependent QM is far too broad to mention here. Pretty much every method here, other than eigenvalue methods, can be used for time-dependent problems.
$endgroup$
– Emilio Pisanty
May 12 at 19:23





$begingroup$
Regarding numerical methods: are you seriously doubting that the TDSE can be solved numerically? If you've only been shown a restricted class of Runge-Kutta solvers, then go look for a text that deals with broader variants of the method. This google search is a good starting point - the zoo of methods for time-dependent QM is far too broad to mention here. Pretty much every method here, other than eigenvalue methods, can be used for time-dependent problems.
$endgroup$
– Emilio Pisanty
May 12 at 19:23













$begingroup$
No, of course I am not doubting it can be solved numerically; just don't understand how the standard methods apply, which to me amounts to RK (I have very limited numerical PDE experience). Thanks for the resources.
$endgroup$
– FunctionalDefect
May 12 at 19:38




$begingroup$
No, of course I am not doubting it can be solved numerically; just don't understand how the standard methods apply, which to me amounts to RK (I have very limited numerical PDE experience). Thanks for the resources.
$endgroup$
– FunctionalDefect
May 12 at 19:38

















draft saved

draft discarded
















































Thanks for contributing an answer to Physics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f479497%2fwhy-do-we-assume-the-potential-is-independent-of-time-in-the-schr%25c3%25b6dinger-equatio%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020