Why are parallelograms defined as quadrilaterals? What term would encompass polygons with greater than two parallel pairs?What are curves (generalized ellipses) with more than two focal points called and how do they look like?Elementary Geometry Nomenclature: why so bad?Name of theorem about two quadrilaterals with parallel edgesIs there a term for two polygons with the same angles but different side lengths?What are equations with a degree more than 3 called?Which polygons are “mediogons” of simple polygons?What is the term for a function whose output is greater than its input, f(x) > x?Is there a term for functions which are greater than a bound?Name and number of “equilateral tessellations with same angles on all vertexes”ABCD and AECF are two parallelograms and side EF is parallel to AD . suppose AF and DE met at X and BF AND CE AT Y . prove that XY is parallel to AB

Final exams: What is the most common protocol for scheduling?

How did NASA Langley end up with the first 737?

3 prong range outlet

Surprisingly persistent local variable

Burned out due to current job, Can I take a week of vacation between jobs?

How does the Earth's center produce heat?

Freedom of Speech and Assembly in China

What would prevent living skin from being a good conductor for magic?

Why does Bran want to find Drogon?

Why did Jon Snow do this immoral act if he is so honorable?

Why does the Starter Set wizard have six spells in their spellbook?

How would a developer who mostly fixed bugs for years at a company call out their contributions in their CV?

Possibility of faking someone's public key

Why was this character made Grand Maester?

What is the recommended procedure to land a taildragger in a crosswind?

Is my plasma cannon concept viable?

Why would a rational buyer offer to buy with no conditions precedent?

Filter YAML file content using sed/awk

Are runways booked by airlines to land their planes?

...And they were stumped for a long time

Are there any German nonsense poems (Jabberwocky)?

How can I properly write this equation in Latex?

Finding all files with a given extension whose base name is the name of the parent directory

What were the Ethiopians doing in Xerxes' army?



Why are parallelograms defined as quadrilaterals? What term would encompass polygons with greater than two parallel pairs?


What are curves (generalized ellipses) with more than two focal points called and how do they look like?Elementary Geometry Nomenclature: why so bad?Name of theorem about two quadrilaterals with parallel edgesIs there a term for two polygons with the same angles but different side lengths?What are equations with a degree more than 3 called?Which polygons are “mediogons” of simple polygons?What is the term for a function whose output is greater than its input, f(x) > x?Is there a term for functions which are greater than a bound?Name and number of “equilateral tessellations with same angles on all vertexes”ABCD and AECF are two parallelograms and side EF is parallel to AD . suppose AF and DE met at X and BF AND CE AT Y . prove that XY is parallel to AB













5












$begingroup$


It seems the definition of a parallelogram is locked to quadrilaterals for some reason. Is there a reason for this? Why couldn't a parallelogram (given the way the word seems rather than as a mathematical/geometric construct) contain greater than two pairs of parallel sides? In a hexagon for example, all six sides are parallel to their opposing side. Is there a term for this kind of object?



It seems to me there must be some value in describing a polygon with even numbers of sides in which the opposing sides are parallel to each other. While a hexagon, octagon, decagon, etc. all match this rule, you could have polygons with unequal sides as well.



enter image description here



Edit 1: Object described by Mark Fischler



Object described by Mark Fischler



Zonogon:



enter image description here










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Indeed, I see no reason why the word "parallelogram," which has origins in Middle French where it refers to "bounded parallel lines," should have come to mean specifically 4-sided plane figures. In solid geometry, again the term "parallelpiped" is reserved for six-sided figures, now with 3 pairs of parallel opposite faces.
    $endgroup$
    – Mark Fischler
    May 9 at 21:37






  • 1




    $begingroup$
    @MarkFischler Yes basically! Also, your comment briefly hurt my brain at the switch from 2D to 3D terminology of 'sides' (2D: side = edge; 3D: side = face).
    $endgroup$
    – duct_tape_coder
    May 9 at 21:43










  • $begingroup$
    @ Mark Fischler What word did Euklid use for "parallelogramm"?
    $endgroup$
    – user
    May 9 at 21:44











  • $begingroup$
    I have added an answer to what Euclid called them in my answer below; the comments don't seem to speak pasted Greek.
    $endgroup$
    – Mark Fischler
    May 9 at 22:03















5












$begingroup$


It seems the definition of a parallelogram is locked to quadrilaterals for some reason. Is there a reason for this? Why couldn't a parallelogram (given the way the word seems rather than as a mathematical/geometric construct) contain greater than two pairs of parallel sides? In a hexagon for example, all six sides are parallel to their opposing side. Is there a term for this kind of object?



It seems to me there must be some value in describing a polygon with even numbers of sides in which the opposing sides are parallel to each other. While a hexagon, octagon, decagon, etc. all match this rule, you could have polygons with unequal sides as well.



enter image description here



Edit 1: Object described by Mark Fischler



Object described by Mark Fischler



Zonogon:



enter image description here










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Indeed, I see no reason why the word "parallelogram," which has origins in Middle French where it refers to "bounded parallel lines," should have come to mean specifically 4-sided plane figures. In solid geometry, again the term "parallelpiped" is reserved for six-sided figures, now with 3 pairs of parallel opposite faces.
    $endgroup$
    – Mark Fischler
    May 9 at 21:37






  • 1




    $begingroup$
    @MarkFischler Yes basically! Also, your comment briefly hurt my brain at the switch from 2D to 3D terminology of 'sides' (2D: side = edge; 3D: side = face).
    $endgroup$
    – duct_tape_coder
    May 9 at 21:43










  • $begingroup$
    @ Mark Fischler What word did Euklid use for "parallelogramm"?
    $endgroup$
    – user
    May 9 at 21:44











  • $begingroup$
    I have added an answer to what Euclid called them in my answer below; the comments don't seem to speak pasted Greek.
    $endgroup$
    – Mark Fischler
    May 9 at 22:03













5












5








5


1



$begingroup$


It seems the definition of a parallelogram is locked to quadrilaterals for some reason. Is there a reason for this? Why couldn't a parallelogram (given the way the word seems rather than as a mathematical/geometric construct) contain greater than two pairs of parallel sides? In a hexagon for example, all six sides are parallel to their opposing side. Is there a term for this kind of object?



It seems to me there must be some value in describing a polygon with even numbers of sides in which the opposing sides are parallel to each other. While a hexagon, octagon, decagon, etc. all match this rule, you could have polygons with unequal sides as well.



enter image description here



Edit 1: Object described by Mark Fischler



Object described by Mark Fischler



Zonogon:



enter image description here










share|cite|improve this question











$endgroup$




It seems the definition of a parallelogram is locked to quadrilaterals for some reason. Is there a reason for this? Why couldn't a parallelogram (given the way the word seems rather than as a mathematical/geometric construct) contain greater than two pairs of parallel sides? In a hexagon for example, all six sides are parallel to their opposing side. Is there a term for this kind of object?



It seems to me there must be some value in describing a polygon with even numbers of sides in which the opposing sides are parallel to each other. While a hexagon, octagon, decagon, etc. all match this rule, you could have polygons with unequal sides as well.



enter image description here



Edit 1: Object described by Mark Fischler



Object described by Mark Fischler



Zonogon:



enter image description here







terminology plane-geometry quadrilateral






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 9 at 22:05







duct_tape_coder

















asked May 9 at 21:23









duct_tape_coderduct_tape_coder

1284




1284







  • 1




    $begingroup$
    Indeed, I see no reason why the word "parallelogram," which has origins in Middle French where it refers to "bounded parallel lines," should have come to mean specifically 4-sided plane figures. In solid geometry, again the term "parallelpiped" is reserved for six-sided figures, now with 3 pairs of parallel opposite faces.
    $endgroup$
    – Mark Fischler
    May 9 at 21:37






  • 1




    $begingroup$
    @MarkFischler Yes basically! Also, your comment briefly hurt my brain at the switch from 2D to 3D terminology of 'sides' (2D: side = edge; 3D: side = face).
    $endgroup$
    – duct_tape_coder
    May 9 at 21:43










  • $begingroup$
    @ Mark Fischler What word did Euklid use for "parallelogramm"?
    $endgroup$
    – user
    May 9 at 21:44











  • $begingroup$
    I have added an answer to what Euclid called them in my answer below; the comments don't seem to speak pasted Greek.
    $endgroup$
    – Mark Fischler
    May 9 at 22:03












  • 1




    $begingroup$
    Indeed, I see no reason why the word "parallelogram," which has origins in Middle French where it refers to "bounded parallel lines," should have come to mean specifically 4-sided plane figures. In solid geometry, again the term "parallelpiped" is reserved for six-sided figures, now with 3 pairs of parallel opposite faces.
    $endgroup$
    – Mark Fischler
    May 9 at 21:37






  • 1




    $begingroup$
    @MarkFischler Yes basically! Also, your comment briefly hurt my brain at the switch from 2D to 3D terminology of 'sides' (2D: side = edge; 3D: side = face).
    $endgroup$
    – duct_tape_coder
    May 9 at 21:43










  • $begingroup$
    @ Mark Fischler What word did Euklid use for "parallelogramm"?
    $endgroup$
    – user
    May 9 at 21:44











  • $begingroup$
    I have added an answer to what Euclid called them in my answer below; the comments don't seem to speak pasted Greek.
    $endgroup$
    – Mark Fischler
    May 9 at 22:03







1




1




$begingroup$
Indeed, I see no reason why the word "parallelogram," which has origins in Middle French where it refers to "bounded parallel lines," should have come to mean specifically 4-sided plane figures. In solid geometry, again the term "parallelpiped" is reserved for six-sided figures, now with 3 pairs of parallel opposite faces.
$endgroup$
– Mark Fischler
May 9 at 21:37




$begingroup$
Indeed, I see no reason why the word "parallelogram," which has origins in Middle French where it refers to "bounded parallel lines," should have come to mean specifically 4-sided plane figures. In solid geometry, again the term "parallelpiped" is reserved for six-sided figures, now with 3 pairs of parallel opposite faces.
$endgroup$
– Mark Fischler
May 9 at 21:37




1




1




$begingroup$
@MarkFischler Yes basically! Also, your comment briefly hurt my brain at the switch from 2D to 3D terminology of 'sides' (2D: side = edge; 3D: side = face).
$endgroup$
– duct_tape_coder
May 9 at 21:43




$begingroup$
@MarkFischler Yes basically! Also, your comment briefly hurt my brain at the switch from 2D to 3D terminology of 'sides' (2D: side = edge; 3D: side = face).
$endgroup$
– duct_tape_coder
May 9 at 21:43












$begingroup$
@ Mark Fischler What word did Euklid use for "parallelogramm"?
$endgroup$
– user
May 9 at 21:44





$begingroup$
@ Mark Fischler What word did Euklid use for "parallelogramm"?
$endgroup$
– user
May 9 at 21:44













$begingroup$
I have added an answer to what Euclid called them in my answer below; the comments don't seem to speak pasted Greek.
$endgroup$
– Mark Fischler
May 9 at 22:03




$begingroup$
I have added an answer to what Euclid called them in my answer below; the comments don't seem to speak pasted Greek.
$endgroup$
– Mark Fischler
May 9 at 22:03










2 Answers
2






active

oldest

votes


















6












$begingroup$

Interesting question. Parallelograms are quadrilaterals for historical reasons. They could have been defined to include your examples, but weren't. Now the meaning is so common that it can't be changed.



I don't think there is a name for your class of polygons. The reason is in this:




It seems to me there must be some value in describing a polygon with
even numbers of sides in which the opposing sides are parallel to each
other.




If there were some value - if these polygons came up often in geometry - then someone would have named them. If you have interesting things to say about them and publish your thoughts you'll invent a name in your paper. If it's widely read the name will stick.



I thought parallelogon would be a good possibility, but that name is taken: https://en.wikipedia.org/wiki/Parallelogon .



The convex polygons whose sides come in equal parallel pairs are zonogons: https://en.wikipedia.org/wiki/Zonogon . Your polygons have zonogons as nontrivial Minkowski summands.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you for your answer. The zonogon concept is fascinating. The question was a bit more r/showerthoughts than math.SE (I'm no mathematician) and I'm quickly out of my depth but you've cut to the quick of my question. I think Mark's suggested object (I had to draw it to understand it so I've pasted it to my question) creates even more questions I can't answer.
    $endgroup$
    – duct_tape_coder
    May 9 at 22:09







  • 1




    $begingroup$
    I strongly recommend you reconsider the sentiment that "If there were some value ... then someone would have named them." Experimentation and exploration of math concepts should never be curtailed by that line of thinking.
    $endgroup$
    – Zimul8r
    May 10 at 3:55



















5












$begingroup$

I'm going to propose, out of the blue, terms like "hexaparallelogram", "octaparallelogram", and so forth.



I'm wondering whether, for more than $4$ sides, you would like your definition of hexaparallelogram to be restricted to having 3 pairs of parallel and pairwise equal sides (as in your picture - evidently these have a name, zonogon), or would you include a hexagon with vertices at $(0,0), (12,0), (16,6), (4,12), (0,12), (-6,3)$ which has three pairs of parallel sides but no two sides of equal length?



Euclid, in proposition 34, introduces the term (παραλληλόγραμμα χωρία) which we can translate to "parallelogrammic area." So much for the etymology sites that trace the word only to Middle French. Euclid himself restricted the word to just four-sided figures. Proclus credits Euclid with having introduced the term "parallelogram," as opposed to bringing down that term from earlier works. So that tells us who to blame.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    +1 interesting history. Your naming convention would require advance knowledge of the number of edges. What about "ultraparallelogram" or "megaparallelogram"?
    $endgroup$
    – Ethan Bolker
    May 9 at 22:07







  • 1




    $begingroup$
    Thank your for your answer as well. I've drawn (as best I understood it) and posted your object in the question. The zonogon was sort of what I was thinking originally (n-sides) but your object with sides of different lengths is even more fascinating. Thank you for the etymology as well.
    $endgroup$
    – duct_tape_coder
    May 9 at 22:13











  • $begingroup$
    What is the etymology of zonogon?
    $endgroup$
    – Anush
    May 10 at 4:15











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3220273%2fwhy-are-parallelograms-defined-as-quadrilaterals-what-term-would-encompass-poly%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Interesting question. Parallelograms are quadrilaterals for historical reasons. They could have been defined to include your examples, but weren't. Now the meaning is so common that it can't be changed.



I don't think there is a name for your class of polygons. The reason is in this:




It seems to me there must be some value in describing a polygon with
even numbers of sides in which the opposing sides are parallel to each
other.




If there were some value - if these polygons came up often in geometry - then someone would have named them. If you have interesting things to say about them and publish your thoughts you'll invent a name in your paper. If it's widely read the name will stick.



I thought parallelogon would be a good possibility, but that name is taken: https://en.wikipedia.org/wiki/Parallelogon .



The convex polygons whose sides come in equal parallel pairs are zonogons: https://en.wikipedia.org/wiki/Zonogon . Your polygons have zonogons as nontrivial Minkowski summands.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you for your answer. The zonogon concept is fascinating. The question was a bit more r/showerthoughts than math.SE (I'm no mathematician) and I'm quickly out of my depth but you've cut to the quick of my question. I think Mark's suggested object (I had to draw it to understand it so I've pasted it to my question) creates even more questions I can't answer.
    $endgroup$
    – duct_tape_coder
    May 9 at 22:09







  • 1




    $begingroup$
    I strongly recommend you reconsider the sentiment that "If there were some value ... then someone would have named them." Experimentation and exploration of math concepts should never be curtailed by that line of thinking.
    $endgroup$
    – Zimul8r
    May 10 at 3:55
















6












$begingroup$

Interesting question. Parallelograms are quadrilaterals for historical reasons. They could have been defined to include your examples, but weren't. Now the meaning is so common that it can't be changed.



I don't think there is a name for your class of polygons. The reason is in this:




It seems to me there must be some value in describing a polygon with
even numbers of sides in which the opposing sides are parallel to each
other.




If there were some value - if these polygons came up often in geometry - then someone would have named them. If you have interesting things to say about them and publish your thoughts you'll invent a name in your paper. If it's widely read the name will stick.



I thought parallelogon would be a good possibility, but that name is taken: https://en.wikipedia.org/wiki/Parallelogon .



The convex polygons whose sides come in equal parallel pairs are zonogons: https://en.wikipedia.org/wiki/Zonogon . Your polygons have zonogons as nontrivial Minkowski summands.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you for your answer. The zonogon concept is fascinating. The question was a bit more r/showerthoughts than math.SE (I'm no mathematician) and I'm quickly out of my depth but you've cut to the quick of my question. I think Mark's suggested object (I had to draw it to understand it so I've pasted it to my question) creates even more questions I can't answer.
    $endgroup$
    – duct_tape_coder
    May 9 at 22:09







  • 1




    $begingroup$
    I strongly recommend you reconsider the sentiment that "If there were some value ... then someone would have named them." Experimentation and exploration of math concepts should never be curtailed by that line of thinking.
    $endgroup$
    – Zimul8r
    May 10 at 3:55














6












6








6





$begingroup$

Interesting question. Parallelograms are quadrilaterals for historical reasons. They could have been defined to include your examples, but weren't. Now the meaning is so common that it can't be changed.



I don't think there is a name for your class of polygons. The reason is in this:




It seems to me there must be some value in describing a polygon with
even numbers of sides in which the opposing sides are parallel to each
other.




If there were some value - if these polygons came up often in geometry - then someone would have named them. If you have interesting things to say about them and publish your thoughts you'll invent a name in your paper. If it's widely read the name will stick.



I thought parallelogon would be a good possibility, but that name is taken: https://en.wikipedia.org/wiki/Parallelogon .



The convex polygons whose sides come in equal parallel pairs are zonogons: https://en.wikipedia.org/wiki/Zonogon . Your polygons have zonogons as nontrivial Minkowski summands.






share|cite|improve this answer











$endgroup$



Interesting question. Parallelograms are quadrilaterals for historical reasons. They could have been defined to include your examples, but weren't. Now the meaning is so common that it can't be changed.



I don't think there is a name for your class of polygons. The reason is in this:




It seems to me there must be some value in describing a polygon with
even numbers of sides in which the opposing sides are parallel to each
other.




If there were some value - if these polygons came up often in geometry - then someone would have named them. If you have interesting things to say about them and publish your thoughts you'll invent a name in your paper. If it's widely read the name will stick.



I thought parallelogon would be a good possibility, but that name is taken: https://en.wikipedia.org/wiki/Parallelogon .



The convex polygons whose sides come in equal parallel pairs are zonogons: https://en.wikipedia.org/wiki/Zonogon . Your polygons have zonogons as nontrivial Minkowski summands.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited May 9 at 21:56

























answered May 9 at 21:45









Ethan BolkerEthan Bolker

48.7k556124




48.7k556124











  • $begingroup$
    Thank you for your answer. The zonogon concept is fascinating. The question was a bit more r/showerthoughts than math.SE (I'm no mathematician) and I'm quickly out of my depth but you've cut to the quick of my question. I think Mark's suggested object (I had to draw it to understand it so I've pasted it to my question) creates even more questions I can't answer.
    $endgroup$
    – duct_tape_coder
    May 9 at 22:09







  • 1




    $begingroup$
    I strongly recommend you reconsider the sentiment that "If there were some value ... then someone would have named them." Experimentation and exploration of math concepts should never be curtailed by that line of thinking.
    $endgroup$
    – Zimul8r
    May 10 at 3:55

















  • $begingroup$
    Thank you for your answer. The zonogon concept is fascinating. The question was a bit more r/showerthoughts than math.SE (I'm no mathematician) and I'm quickly out of my depth but you've cut to the quick of my question. I think Mark's suggested object (I had to draw it to understand it so I've pasted it to my question) creates even more questions I can't answer.
    $endgroup$
    – duct_tape_coder
    May 9 at 22:09







  • 1




    $begingroup$
    I strongly recommend you reconsider the sentiment that "If there were some value ... then someone would have named them." Experimentation and exploration of math concepts should never be curtailed by that line of thinking.
    $endgroup$
    – Zimul8r
    May 10 at 3:55
















$begingroup$
Thank you for your answer. The zonogon concept is fascinating. The question was a bit more r/showerthoughts than math.SE (I'm no mathematician) and I'm quickly out of my depth but you've cut to the quick of my question. I think Mark's suggested object (I had to draw it to understand it so I've pasted it to my question) creates even more questions I can't answer.
$endgroup$
– duct_tape_coder
May 9 at 22:09





$begingroup$
Thank you for your answer. The zonogon concept is fascinating. The question was a bit more r/showerthoughts than math.SE (I'm no mathematician) and I'm quickly out of my depth but you've cut to the quick of my question. I think Mark's suggested object (I had to draw it to understand it so I've pasted it to my question) creates even more questions I can't answer.
$endgroup$
– duct_tape_coder
May 9 at 22:09





1




1




$begingroup$
I strongly recommend you reconsider the sentiment that "If there were some value ... then someone would have named them." Experimentation and exploration of math concepts should never be curtailed by that line of thinking.
$endgroup$
– Zimul8r
May 10 at 3:55





$begingroup$
I strongly recommend you reconsider the sentiment that "If there were some value ... then someone would have named them." Experimentation and exploration of math concepts should never be curtailed by that line of thinking.
$endgroup$
– Zimul8r
May 10 at 3:55












5












$begingroup$

I'm going to propose, out of the blue, terms like "hexaparallelogram", "octaparallelogram", and so forth.



I'm wondering whether, for more than $4$ sides, you would like your definition of hexaparallelogram to be restricted to having 3 pairs of parallel and pairwise equal sides (as in your picture - evidently these have a name, zonogon), or would you include a hexagon with vertices at $(0,0), (12,0), (16,6), (4,12), (0,12), (-6,3)$ which has three pairs of parallel sides but no two sides of equal length?



Euclid, in proposition 34, introduces the term (παραλληλόγραμμα χωρία) which we can translate to "parallelogrammic area." So much for the etymology sites that trace the word only to Middle French. Euclid himself restricted the word to just four-sided figures. Proclus credits Euclid with having introduced the term "parallelogram," as opposed to bringing down that term from earlier works. So that tells us who to blame.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    +1 interesting history. Your naming convention would require advance knowledge of the number of edges. What about "ultraparallelogram" or "megaparallelogram"?
    $endgroup$
    – Ethan Bolker
    May 9 at 22:07







  • 1




    $begingroup$
    Thank your for your answer as well. I've drawn (as best I understood it) and posted your object in the question. The zonogon was sort of what I was thinking originally (n-sides) but your object with sides of different lengths is even more fascinating. Thank you for the etymology as well.
    $endgroup$
    – duct_tape_coder
    May 9 at 22:13











  • $begingroup$
    What is the etymology of zonogon?
    $endgroup$
    – Anush
    May 10 at 4:15















5












$begingroup$

I'm going to propose, out of the blue, terms like "hexaparallelogram", "octaparallelogram", and so forth.



I'm wondering whether, for more than $4$ sides, you would like your definition of hexaparallelogram to be restricted to having 3 pairs of parallel and pairwise equal sides (as in your picture - evidently these have a name, zonogon), or would you include a hexagon with vertices at $(0,0), (12,0), (16,6), (4,12), (0,12), (-6,3)$ which has three pairs of parallel sides but no two sides of equal length?



Euclid, in proposition 34, introduces the term (παραλληλόγραμμα χωρία) which we can translate to "parallelogrammic area." So much for the etymology sites that trace the word only to Middle French. Euclid himself restricted the word to just four-sided figures. Proclus credits Euclid with having introduced the term "parallelogram," as opposed to bringing down that term from earlier works. So that tells us who to blame.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    +1 interesting history. Your naming convention would require advance knowledge of the number of edges. What about "ultraparallelogram" or "megaparallelogram"?
    $endgroup$
    – Ethan Bolker
    May 9 at 22:07







  • 1




    $begingroup$
    Thank your for your answer as well. I've drawn (as best I understood it) and posted your object in the question. The zonogon was sort of what I was thinking originally (n-sides) but your object with sides of different lengths is even more fascinating. Thank you for the etymology as well.
    $endgroup$
    – duct_tape_coder
    May 9 at 22:13











  • $begingroup$
    What is the etymology of zonogon?
    $endgroup$
    – Anush
    May 10 at 4:15













5












5








5





$begingroup$

I'm going to propose, out of the blue, terms like "hexaparallelogram", "octaparallelogram", and so forth.



I'm wondering whether, for more than $4$ sides, you would like your definition of hexaparallelogram to be restricted to having 3 pairs of parallel and pairwise equal sides (as in your picture - evidently these have a name, zonogon), or would you include a hexagon with vertices at $(0,0), (12,0), (16,6), (4,12), (0,12), (-6,3)$ which has three pairs of parallel sides but no two sides of equal length?



Euclid, in proposition 34, introduces the term (παραλληλόγραμμα χωρία) which we can translate to "parallelogrammic area." So much for the etymology sites that trace the word only to Middle French. Euclid himself restricted the word to just four-sided figures. Proclus credits Euclid with having introduced the term "parallelogram," as opposed to bringing down that term from earlier works. So that tells us who to blame.






share|cite|improve this answer











$endgroup$



I'm going to propose, out of the blue, terms like "hexaparallelogram", "octaparallelogram", and so forth.



I'm wondering whether, for more than $4$ sides, you would like your definition of hexaparallelogram to be restricted to having 3 pairs of parallel and pairwise equal sides (as in your picture - evidently these have a name, zonogon), or would you include a hexagon with vertices at $(0,0), (12,0), (16,6), (4,12), (0,12), (-6,3)$ which has three pairs of parallel sides but no two sides of equal length?



Euclid, in proposition 34, introduces the term (παραλληλόγραμμα χωρία) which we can translate to "parallelogrammic area." So much for the etymology sites that trace the word only to Middle French. Euclid himself restricted the word to just four-sided figures. Proclus credits Euclid with having introduced the term "parallelogram," as opposed to bringing down that term from earlier works. So that tells us who to blame.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited May 9 at 22:03

























answered May 9 at 21:49









Mark FischlerMark Fischler

35k12753




35k12753







  • 1




    $begingroup$
    +1 interesting history. Your naming convention would require advance knowledge of the number of edges. What about "ultraparallelogram" or "megaparallelogram"?
    $endgroup$
    – Ethan Bolker
    May 9 at 22:07







  • 1




    $begingroup$
    Thank your for your answer as well. I've drawn (as best I understood it) and posted your object in the question. The zonogon was sort of what I was thinking originally (n-sides) but your object with sides of different lengths is even more fascinating. Thank you for the etymology as well.
    $endgroup$
    – duct_tape_coder
    May 9 at 22:13











  • $begingroup$
    What is the etymology of zonogon?
    $endgroup$
    – Anush
    May 10 at 4:15












  • 1




    $begingroup$
    +1 interesting history. Your naming convention would require advance knowledge of the number of edges. What about "ultraparallelogram" or "megaparallelogram"?
    $endgroup$
    – Ethan Bolker
    May 9 at 22:07







  • 1




    $begingroup$
    Thank your for your answer as well. I've drawn (as best I understood it) and posted your object in the question. The zonogon was sort of what I was thinking originally (n-sides) but your object with sides of different lengths is even more fascinating. Thank you for the etymology as well.
    $endgroup$
    – duct_tape_coder
    May 9 at 22:13











  • $begingroup$
    What is the etymology of zonogon?
    $endgroup$
    – Anush
    May 10 at 4:15







1




1




$begingroup$
+1 interesting history. Your naming convention would require advance knowledge of the number of edges. What about "ultraparallelogram" or "megaparallelogram"?
$endgroup$
– Ethan Bolker
May 9 at 22:07





$begingroup$
+1 interesting history. Your naming convention would require advance knowledge of the number of edges. What about "ultraparallelogram" or "megaparallelogram"?
$endgroup$
– Ethan Bolker
May 9 at 22:07





1




1




$begingroup$
Thank your for your answer as well. I've drawn (as best I understood it) and posted your object in the question. The zonogon was sort of what I was thinking originally (n-sides) but your object with sides of different lengths is even more fascinating. Thank you for the etymology as well.
$endgroup$
– duct_tape_coder
May 9 at 22:13





$begingroup$
Thank your for your answer as well. I've drawn (as best I understood it) and posted your object in the question. The zonogon was sort of what I was thinking originally (n-sides) but your object with sides of different lengths is even more fascinating. Thank you for the etymology as well.
$endgroup$
– duct_tape_coder
May 9 at 22:13













$begingroup$
What is the etymology of zonogon?
$endgroup$
– Anush
May 10 at 4:15




$begingroup$
What is the etymology of zonogon?
$endgroup$
– Anush
May 10 at 4:15

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3220273%2fwhy-are-parallelograms-defined-as-quadrilaterals-what-term-would-encompass-poly%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020