Under what conditions does the function C = f(A,B) satisfy H(C|A) = H(B)? The Next CEO of Stack OverflowMeasuring entropy for a table (e.g., SQL results)Information of a stream of bitsCan a transcendental number like $e$ or $pi$ be compressed as not algorithmically random?How to compare conditional entropy and mutual information?One-shot Private Randomness ExtractorFind minimum conditional entropyFinding the dichotomy that maximizes information gain for a classifier?Higher order empirical entropy is not the entropy of the empirical distribution?Conceptual overview: Self-information, Mutual information, uncertainty, entropyHow realistic is the i.i.d assumption in the definition of Shannon's entropy?

How do I get the green key off the shelf in the Dobby level of Lego Harry Potter 2?

Customer Requests (Sometimes) Drive Me Bonkers!

Why doesn't a table tennis ball float on the surface? How do we calculate buoyancy here?

How do we know the LHC results are robust?

What is the point of a new vote on May's deal when the indicative votes suggest she will not win?

Can I equip Skullclamp on a creature I am sacrificing?

Which organization defines CJK Unified Ideographs?

What is the purpose of the Evocation wizard's Potent Cantrip feature?

How do I go from 300 unfinished/half written blog posts, to published posts?

Why does C# sound extremely flat when saxophone is tuned to G?

Unreliable Magic - Is it worth it?

Should I tutor a student who I know has cheated on their homework?

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

Is HostGator storing my password in plaintext?

Inappropriate reference requests from Journal reviewers

Can the Reverse Gravity spell affect the Meteor Swarm spell?

What makes a siege story/plot interesting?

Return the Closest Prime Number

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Only print output after finding pattern

If I blow insulation everywhere in my attic except the door trap, will heat escape through it?

Does it take more energy to get to Venus or to Mars?

Visit to the USA with ESTA approved before trip to Iran

What does "Its cash flow is deeply negative" mean?



Under what conditions does the function C = f(A,B) satisfy H(C|A) = H(B)?



The Next CEO of Stack OverflowMeasuring entropy for a table (e.g., SQL results)Information of a stream of bitsCan a transcendental number like $e$ or $pi$ be compressed as not algorithmically random?How to compare conditional entropy and mutual information?One-shot Private Randomness ExtractorFind minimum conditional entropyFinding the dichotomy that maximizes information gain for a classifier?Higher order empirical entropy is not the entropy of the empirical distribution?Conceptual overview: Self-information, Mutual information, uncertainty, entropyHow realistic is the i.i.d assumption in the definition of Shannon's entropy?










3












$begingroup$


Suppose we have a function $f$,



$$
C = f(A,B),
$$



where $A$, $B$ and $C$ are random variables.



I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:



$$
H(C|A) = H(B),
$$



where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.



Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above is true.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    The function needs to be injective with respect to its second argument.
    $endgroup$
    – Yuval Filmus
    20 hours ago










  • $begingroup$
    @YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
    $endgroup$
    – hklel
    20 hours ago















3












$begingroup$


Suppose we have a function $f$,



$$
C = f(A,B),
$$



where $A$, $B$ and $C$ are random variables.



I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:



$$
H(C|A) = H(B),
$$



where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.



Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above is true.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    The function needs to be injective with respect to its second argument.
    $endgroup$
    – Yuval Filmus
    20 hours ago










  • $begingroup$
    @YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
    $endgroup$
    – hklel
    20 hours ago













3












3








3





$begingroup$


Suppose we have a function $f$,



$$
C = f(A,B),
$$



where $A$, $B$ and $C$ are random variables.



I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:



$$
H(C|A) = H(B),
$$



where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.



Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above is true.










share|cite|improve this question









$endgroup$




Suppose we have a function $f$,



$$
C = f(A,B),
$$



where $A$, $B$ and $C$ are random variables.



I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:



$$
H(C|A) = H(B),
$$



where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.



Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above is true.







information-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 21 hours ago









hklelhklel

1255




1255







  • 1




    $begingroup$
    The function needs to be injective with respect to its second argument.
    $endgroup$
    – Yuval Filmus
    20 hours ago










  • $begingroup$
    @YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
    $endgroup$
    – hklel
    20 hours ago












  • 1




    $begingroup$
    The function needs to be injective with respect to its second argument.
    $endgroup$
    – Yuval Filmus
    20 hours ago










  • $begingroup$
    @YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
    $endgroup$
    – hklel
    20 hours ago







1




1




$begingroup$
The function needs to be injective with respect to its second argument.
$endgroup$
– Yuval Filmus
20 hours ago




$begingroup$
The function needs to be injective with respect to its second argument.
$endgroup$
– Yuval Filmus
20 hours ago












$begingroup$
@YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
$endgroup$
– hklel
20 hours ago




$begingroup$
@YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
$endgroup$
– hklel
20 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.



Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$

Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    $H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
    $endgroup$
    – xskxzr
    19 hours ago







  • 3




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    18 hours ago



















8












$begingroup$

Note



beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign



so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.



For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    18 hours ago










  • $begingroup$
    @EmilJeřábek Thanks, fixed.
    $endgroup$
    – xskxzr
    18 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106156%2funder-what-conditions-does-the-function-c-fa-b-satisfy-hca-hb%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.



Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$

Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    $H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
    $endgroup$
    – xskxzr
    19 hours ago







  • 3




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    18 hours ago
















4












$begingroup$

The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.



Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$

Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    $H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
    $endgroup$
    – xskxzr
    19 hours ago







  • 3




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    18 hours ago














4












4








4





$begingroup$

The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.



Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$

Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.






share|cite|improve this answer











$endgroup$



The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.



Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$

Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 18 hours ago

























answered 20 hours ago









Yuval FilmusYuval Filmus

195k14184348




195k14184348







  • 1




    $begingroup$
    $H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
    $endgroup$
    – xskxzr
    19 hours ago







  • 3




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    18 hours ago













  • 1




    $begingroup$
    $H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
    $endgroup$
    – xskxzr
    19 hours ago







  • 3




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    18 hours ago








1




1




$begingroup$
$H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
$endgroup$
– xskxzr
19 hours ago





$begingroup$
$H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
$endgroup$
– xskxzr
19 hours ago





3




3




$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago





$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago












8












$begingroup$

Note



beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign



so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.



For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    18 hours ago










  • $begingroup$
    @EmilJeřábek Thanks, fixed.
    $endgroup$
    – xskxzr
    18 hours ago















8












$begingroup$

Note



beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign



so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.



For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    18 hours ago










  • $begingroup$
    @EmilJeřábek Thanks, fixed.
    $endgroup$
    – xskxzr
    18 hours ago













8












8








8





$begingroup$

Note



beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign



so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.



For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.






share|cite|improve this answer











$endgroup$



Note



beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign



so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.



For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 18 hours ago

























answered 19 hours ago









xskxzrxskxzr

4,03521033




4,03521033







  • 2




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    18 hours ago










  • $begingroup$
    @EmilJeřábek Thanks, fixed.
    $endgroup$
    – xskxzr
    18 hours ago












  • 2




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    18 hours ago










  • $begingroup$
    @EmilJeřábek Thanks, fixed.
    $endgroup$
    – xskxzr
    18 hours ago







2




2




$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago




$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
18 hours ago












$begingroup$
@EmilJeřábek Thanks, fixed.
$endgroup$
– xskxzr
18 hours ago




$begingroup$
@EmilJeřábek Thanks, fixed.
$endgroup$
– xskxzr
18 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Computer Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106156%2funder-what-conditions-does-the-function-c-fa-b-satisfy-hca-hb%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to write a 12-bar blues melodyI-IV-V blues progressionHow to play the bridges in a standard blues progressionHow does Gdim7 fit in C# minor?question on a certain chord progressionMusicology of Melody12 bar blues, spread rhythm: alternative to 6th chord to avoid finger stretchChord progressions/ Root key/ MelodiesHow to put chords (POP-EDM) under a given lead vocal melody (starting from a good knowledge in music theory)Are there “rules” for improvising with the minor pentatonic scale over 12-bar shuffle?Confusion about blues scale and chords

Esgonzo ibérico Índice Descrición Distribución Hábitat Ameazas Notas Véxase tamén "Acerca dos nomes dos anfibios e réptiles galegos""Chalcides bedriagai"Chalcides bedriagai en Carrascal, L. M. Salvador, A. (Eds). Enciclopedia virtual de los vertebrados españoles. Museo Nacional de Ciencias Naturales, Madrid. España.Fotos

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020