Antipodal Land Area CalculationCombine Stereographic “Entity” Plot of Arctic Sea with Contour PlotAdministrative Divisions bordering a geographic region (e.g. an ocean)Can anyone explain this weird Plot3D error?RegionIntersection and area on GeoPosition polygonsRotations of a numberUse Wolfram curated databases to determine how many randomly chosen people are needed to have a 50% chance two live in the same or adjacent states?Geolocate multiple IP addressesWill my procedure be correct?How to calculate linear conflicts on a board?Sea Level Rise - How to mask on relief plot

What is the philosophical significance of speech acts/implicature?

Is there a way to generate a list of distinct numbers such that no two subsets ever have an equal sum?

What is causing the white spot to appear in some of my pictures

How did Captain America manage to do this?

Is it idiomatic to construct against `this`

Can someone publish a story that happened to you?

Is there really no use for MD5 anymore?

Get consecutive integer number ranges from list of int

Do I have an "anti-research" personality?

How can Republicans who favour free markets, consistently express anger when they don't like the outcome of that choice?

Was there a Viking Exchange as well as a Columbian one?

Two field separators (colon and space) in awk

Which big number is bigger?

555 timer FM transmitter

Minor Revision with suggestion of an alternative proof by reviewer

Is Diceware more secure than a long passphrase?

How does Captain America channel this power?

Is there any official lore on the Far Realm?

How to denote matrix elements succinctly?

How do I deal with a coworker that keeps asking to make small superficial changes to a report, and it is seriously triggering my anxiety?

Dynamic SOQL query relationship with field visibility for Users

A ​Note ​on ​N!

How to pronounce 'c++' in Spanish

What makes accurate emulation of old systems a difficult task?



Antipodal Land Area Calculation


Combine Stereographic “Entity” Plot of Arctic Sea with Contour PlotAdministrative Divisions bordering a geographic region (e.g. an ocean)Can anyone explain this weird Plot3D error?RegionIntersection and area on GeoPosition polygonsRotations of a numberUse Wolfram curated databases to determine how many randomly chosen people are needed to have a 50% chance two live in the same or adjacent states?Geolocate multiple IP addressesWill my procedure be correct?How to calculate linear conflicts on a board?Sea Level Rise - How to mask on relief plot













9












$begingroup$


Mathematica 12 does antipodal graphics! See here for my treatment of antipodal New Zealand. Most of the Earth's above-sea-level land will have ocean at its antipode. Is there a way to calculate what percentage of above-sea-level land will also have above-sea-level land at its antipode?










share|improve this question











$endgroup$
















    9












    $begingroup$


    Mathematica 12 does antipodal graphics! See here for my treatment of antipodal New Zealand. Most of the Earth's above-sea-level land will have ocean at its antipode. Is there a way to calculate what percentage of above-sea-level land will also have above-sea-level land at its antipode?










    share|improve this question











    $endgroup$














      9












      9








      9





      $begingroup$


      Mathematica 12 does antipodal graphics! See here for my treatment of antipodal New Zealand. Most of the Earth's above-sea-level land will have ocean at its antipode. Is there a way to calculate what percentage of above-sea-level land will also have above-sea-level land at its antipode?










      share|improve this question











      $endgroup$




      Mathematica 12 does antipodal graphics! See here for my treatment of antipodal New Zealand. Most of the Earth's above-sea-level land will have ocean at its antipode. Is there a way to calculate what percentage of above-sea-level land will also have above-sea-level land at its antipode?







      geography recreational-mathematics version-12






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Apr 20 at 16:10









      Cassini

      3,70852337




      3,70852337










      asked Apr 19 at 12:36









      Hans HavermannHans Havermann

      656




      656




















          1 Answer
          1






          active

          oldest

          votes


















          12












          $begingroup$

          Yes, this is possible with a little faff.



          What we want to do is get the RegionUnion of all the countries the antipode intersects with, and then intersect the antipode with that region, and get the remaining area.



          Let's use New Zealand as an example.



          ant = GeoAntipode[Polygon@Entity["Country", "NewZealand"]]


          enter image description here



          Now, we can get the countries that this antipode intersects using GeoEntities:



          GeoEntities[ant, "Country"]



          Entity["Country", "Portugal"], Entity["Country", "Spain"],
          Entity["Country", "Gibraltar"], Entity["Country", "Morocco"]




          Now, it seems like there's a bit of a bug with Gibraltar in my solution, so I've removed it. I'm not sure what causes it, but including Gibraltar deletes Morocco from the Region (don't tell the British).



          countries = 
          RegionUnion @@ (EntityValue[Entity["Country", "Portugal"],
          Entity["Country", "Spain"], Entity["Country", "Morocco"],
          "Polygon"] /. GeoPosition[x_] -> x)


          (We need to do GeoPosition[x_]->x to convert the GeoPositions into regular points, for Region calculations)



          Now we intersect our antipode with this region:



          int = RegionIntersection[ant /. GeoPosition[x_] -> x, countries]


          (This can take a little time depending on the complexity of your polygons)



          We can now convert back to GeoPositions:



          geoint = MeshPrimitives[int, 2] /. Polygon[x_] -> Polygon[GeoPosition[x]]


          and check the graphics to make sure we got it right:



          GeoGraphics[geoint]


          enter image description here



          Finally, to get the actual area of intersections:



          GeoArea[geoint] // Total



          Quantity[1.58773[CenterDot]10^11, ("Meters")^2]




          We can see that we are in the right ballpark:



          UnitConvert[GeoArea[Entity["Country", "NewZealand"]]]



          Quantity[2.64511[CenterDot]10^11, ("Meters")^2]







          share|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "387"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195591%2fantipodal-land-area-calculation%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            12












            $begingroup$

            Yes, this is possible with a little faff.



            What we want to do is get the RegionUnion of all the countries the antipode intersects with, and then intersect the antipode with that region, and get the remaining area.



            Let's use New Zealand as an example.



            ant = GeoAntipode[Polygon@Entity["Country", "NewZealand"]]


            enter image description here



            Now, we can get the countries that this antipode intersects using GeoEntities:



            GeoEntities[ant, "Country"]



            Entity["Country", "Portugal"], Entity["Country", "Spain"],
            Entity["Country", "Gibraltar"], Entity["Country", "Morocco"]




            Now, it seems like there's a bit of a bug with Gibraltar in my solution, so I've removed it. I'm not sure what causes it, but including Gibraltar deletes Morocco from the Region (don't tell the British).



            countries = 
            RegionUnion @@ (EntityValue[Entity["Country", "Portugal"],
            Entity["Country", "Spain"], Entity["Country", "Morocco"],
            "Polygon"] /. GeoPosition[x_] -> x)


            (We need to do GeoPosition[x_]->x to convert the GeoPositions into regular points, for Region calculations)



            Now we intersect our antipode with this region:



            int = RegionIntersection[ant /. GeoPosition[x_] -> x, countries]


            (This can take a little time depending on the complexity of your polygons)



            We can now convert back to GeoPositions:



            geoint = MeshPrimitives[int, 2] /. Polygon[x_] -> Polygon[GeoPosition[x]]


            and check the graphics to make sure we got it right:



            GeoGraphics[geoint]


            enter image description here



            Finally, to get the actual area of intersections:



            GeoArea[geoint] // Total



            Quantity[1.58773[CenterDot]10^11, ("Meters")^2]




            We can see that we are in the right ballpark:



            UnitConvert[GeoArea[Entity["Country", "NewZealand"]]]



            Quantity[2.64511[CenterDot]10^11, ("Meters")^2]







            share|improve this answer









            $endgroup$

















              12












              $begingroup$

              Yes, this is possible with a little faff.



              What we want to do is get the RegionUnion of all the countries the antipode intersects with, and then intersect the antipode with that region, and get the remaining area.



              Let's use New Zealand as an example.



              ant = GeoAntipode[Polygon@Entity["Country", "NewZealand"]]


              enter image description here



              Now, we can get the countries that this antipode intersects using GeoEntities:



              GeoEntities[ant, "Country"]



              Entity["Country", "Portugal"], Entity["Country", "Spain"],
              Entity["Country", "Gibraltar"], Entity["Country", "Morocco"]




              Now, it seems like there's a bit of a bug with Gibraltar in my solution, so I've removed it. I'm not sure what causes it, but including Gibraltar deletes Morocco from the Region (don't tell the British).



              countries = 
              RegionUnion @@ (EntityValue[Entity["Country", "Portugal"],
              Entity["Country", "Spain"], Entity["Country", "Morocco"],
              "Polygon"] /. GeoPosition[x_] -> x)


              (We need to do GeoPosition[x_]->x to convert the GeoPositions into regular points, for Region calculations)



              Now we intersect our antipode with this region:



              int = RegionIntersection[ant /. GeoPosition[x_] -> x, countries]


              (This can take a little time depending on the complexity of your polygons)



              We can now convert back to GeoPositions:



              geoint = MeshPrimitives[int, 2] /. Polygon[x_] -> Polygon[GeoPosition[x]]


              and check the graphics to make sure we got it right:



              GeoGraphics[geoint]


              enter image description here



              Finally, to get the actual area of intersections:



              GeoArea[geoint] // Total



              Quantity[1.58773[CenterDot]10^11, ("Meters")^2]




              We can see that we are in the right ballpark:



              UnitConvert[GeoArea[Entity["Country", "NewZealand"]]]



              Quantity[2.64511[CenterDot]10^11, ("Meters")^2]







              share|improve this answer









              $endgroup$















                12












                12








                12





                $begingroup$

                Yes, this is possible with a little faff.



                What we want to do is get the RegionUnion of all the countries the antipode intersects with, and then intersect the antipode with that region, and get the remaining area.



                Let's use New Zealand as an example.



                ant = GeoAntipode[Polygon@Entity["Country", "NewZealand"]]


                enter image description here



                Now, we can get the countries that this antipode intersects using GeoEntities:



                GeoEntities[ant, "Country"]



                Entity["Country", "Portugal"], Entity["Country", "Spain"],
                Entity["Country", "Gibraltar"], Entity["Country", "Morocco"]




                Now, it seems like there's a bit of a bug with Gibraltar in my solution, so I've removed it. I'm not sure what causes it, but including Gibraltar deletes Morocco from the Region (don't tell the British).



                countries = 
                RegionUnion @@ (EntityValue[Entity["Country", "Portugal"],
                Entity["Country", "Spain"], Entity["Country", "Morocco"],
                "Polygon"] /. GeoPosition[x_] -> x)


                (We need to do GeoPosition[x_]->x to convert the GeoPositions into regular points, for Region calculations)



                Now we intersect our antipode with this region:



                int = RegionIntersection[ant /. GeoPosition[x_] -> x, countries]


                (This can take a little time depending on the complexity of your polygons)



                We can now convert back to GeoPositions:



                geoint = MeshPrimitives[int, 2] /. Polygon[x_] -> Polygon[GeoPosition[x]]


                and check the graphics to make sure we got it right:



                GeoGraphics[geoint]


                enter image description here



                Finally, to get the actual area of intersections:



                GeoArea[geoint] // Total



                Quantity[1.58773[CenterDot]10^11, ("Meters")^2]




                We can see that we are in the right ballpark:



                UnitConvert[GeoArea[Entity["Country", "NewZealand"]]]



                Quantity[2.64511[CenterDot]10^11, ("Meters")^2]







                share|improve this answer









                $endgroup$



                Yes, this is possible with a little faff.



                What we want to do is get the RegionUnion of all the countries the antipode intersects with, and then intersect the antipode with that region, and get the remaining area.



                Let's use New Zealand as an example.



                ant = GeoAntipode[Polygon@Entity["Country", "NewZealand"]]


                enter image description here



                Now, we can get the countries that this antipode intersects using GeoEntities:



                GeoEntities[ant, "Country"]



                Entity["Country", "Portugal"], Entity["Country", "Spain"],
                Entity["Country", "Gibraltar"], Entity["Country", "Morocco"]




                Now, it seems like there's a bit of a bug with Gibraltar in my solution, so I've removed it. I'm not sure what causes it, but including Gibraltar deletes Morocco from the Region (don't tell the British).



                countries = 
                RegionUnion @@ (EntityValue[Entity["Country", "Portugal"],
                Entity["Country", "Spain"], Entity["Country", "Morocco"],
                "Polygon"] /. GeoPosition[x_] -> x)


                (We need to do GeoPosition[x_]->x to convert the GeoPositions into regular points, for Region calculations)



                Now we intersect our antipode with this region:



                int = RegionIntersection[ant /. GeoPosition[x_] -> x, countries]


                (This can take a little time depending on the complexity of your polygons)



                We can now convert back to GeoPositions:



                geoint = MeshPrimitives[int, 2] /. Polygon[x_] -> Polygon[GeoPosition[x]]


                and check the graphics to make sure we got it right:



                GeoGraphics[geoint]


                enter image description here



                Finally, to get the actual area of intersections:



                GeoArea[geoint] // Total



                Quantity[1.58773[CenterDot]10^11, ("Meters")^2]




                We can see that we are in the right ballpark:



                UnitConvert[GeoArea[Entity["Country", "NewZealand"]]]



                Quantity[2.64511[CenterDot]10^11, ("Meters")^2]








                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Apr 19 at 13:52









                Carl LangeCarl Lange

                5,67411344




                5,67411344



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195591%2fantipodal-land-area-calculation%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                    Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                    Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020