Lagrange four-squares theorem — deterministic complexityLagrange four-squares theorem: efficient algorithm with units modulo a prime?The Green-Tao theorem and positive binary quadratic formsEuler and the Four-Squares TheoremApplications of finite continued fractionsWhat are the consequences of a polynomial time algorithm for finding out if a given number is expressible as the sum of two squares?A 'generalized Four Squares Theorem'?Polynomial-time complexity and a question and a remark of SerreFinding integer representation as difference of two triangular numbersSeeking references for finding primes infinitely oftenLagrange four squares theorem

Lagrange four-squares theorem — deterministic complexity


Lagrange four-squares theorem: efficient algorithm with units modulo a prime?The Green-Tao theorem and positive binary quadratic formsEuler and the Four-Squares TheoremApplications of finite continued fractionsWhat are the consequences of a polynomial time algorithm for finding out if a given number is expressible as the sum of two squares?A 'generalized Four Squares Theorem'?Polynomial-time complexity and a question and a remark of SerreFinding integer representation as difference of two triangular numbersSeeking references for finding primes infinitely oftenLagrange four squares theorem













16












$begingroup$


Lagrange's four-squares theorem states that every natural number can be represented as the sum of four integer squares. Rabin and Shallit gave a randomised algorithm that finds one of these solutions in quadratic time. My question is if anything is known about the deterministic time complexity of finding one of the solutions? Any pointers would be appreciated.



(It seems that enumerating all the solutions is hard as factoring in certain cases (via Jacobi's four-square theorem), but correct me if I am wrong.)










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
    $endgroup$
    – Wojowu
    Apr 19 at 13:51















16












$begingroup$


Lagrange's four-squares theorem states that every natural number can be represented as the sum of four integer squares. Rabin and Shallit gave a randomised algorithm that finds one of these solutions in quadratic time. My question is if anything is known about the deterministic time complexity of finding one of the solutions? Any pointers would be appreciated.



(It seems that enumerating all the solutions is hard as factoring in certain cases (via Jacobi's four-square theorem), but correct me if I am wrong.)










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
    $endgroup$
    – Wojowu
    Apr 19 at 13:51













16












16








16


5



$begingroup$


Lagrange's four-squares theorem states that every natural number can be represented as the sum of four integer squares. Rabin and Shallit gave a randomised algorithm that finds one of these solutions in quadratic time. My question is if anything is known about the deterministic time complexity of finding one of the solutions? Any pointers would be appreciated.



(It seems that enumerating all the solutions is hard as factoring in certain cases (via Jacobi's four-square theorem), but correct me if I am wrong.)










share|cite|improve this question











$endgroup$




Lagrange's four-squares theorem states that every natural number can be represented as the sum of four integer squares. Rabin and Shallit gave a randomised algorithm that finds one of these solutions in quadratic time. My question is if anything is known about the deterministic time complexity of finding one of the solutions? Any pointers would be appreciated.



(It seems that enumerating all the solutions is hard as factoring in certain cases (via Jacobi's four-square theorem), but correct me if I am wrong.)







nt.number-theory computational-complexity sums-of-squares






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 20 at 9:45









Martin Sleziak

3,13032231




3,13032231










asked Apr 19 at 13:22









Occams_TrimmerOccams_Trimmer

1835




1835







  • 1




    $begingroup$
    Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
    $endgroup$
    – Wojowu
    Apr 19 at 13:51












  • 1




    $begingroup$
    Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
    $endgroup$
    – Wojowu
    Apr 19 at 13:51







1




1




$begingroup$
Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
$endgroup$
– Wojowu
Apr 19 at 13:51




$begingroup$
Your parenthetical remark is essentially correct. For instance, this is at least as difficult as factoring semiprimes, because it lets us compute $1+p+q+pq$ given a semiprime $pq$, and from $p+q,pq$ it's easy to compute $p,q$.
$endgroup$
– Wojowu
Apr 19 at 13:51










1 Answer
1






active

oldest

votes


















18












$begingroup$

As far as I know, this is still an open problem. This is discussed in Section $5$ of the paper Finding the four squares in Lagrange's theorem by Pollack and Treviño. They mention that there is a deterministic polynomial-time algorithm when $n$ is a prime via quaterion multiplication, due to Bumby. Assuming a conjecture of Heath-Brown, there is a deterministic polynomial-time algorithm that works for all $n$. Finally, they mention that a positive proportion of all numbers can be written as the sum of four squares in deterministic polynomial time. Under the Extended Riemann Hypothesis, almost all numbers can be written as the sum of four squares in deterministic polynomial time.






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328449%2flagrange-four-squares-theorem-deterministic-complexity%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    18












    $begingroup$

    As far as I know, this is still an open problem. This is discussed in Section $5$ of the paper Finding the four squares in Lagrange's theorem by Pollack and Treviño. They mention that there is a deterministic polynomial-time algorithm when $n$ is a prime via quaterion multiplication, due to Bumby. Assuming a conjecture of Heath-Brown, there is a deterministic polynomial-time algorithm that works for all $n$. Finally, they mention that a positive proportion of all numbers can be written as the sum of four squares in deterministic polynomial time. Under the Extended Riemann Hypothesis, almost all numbers can be written as the sum of four squares in deterministic polynomial time.






    share|cite|improve this answer











    $endgroup$

















      18












      $begingroup$

      As far as I know, this is still an open problem. This is discussed in Section $5$ of the paper Finding the four squares in Lagrange's theorem by Pollack and Treviño. They mention that there is a deterministic polynomial-time algorithm when $n$ is a prime via quaterion multiplication, due to Bumby. Assuming a conjecture of Heath-Brown, there is a deterministic polynomial-time algorithm that works for all $n$. Finally, they mention that a positive proportion of all numbers can be written as the sum of four squares in deterministic polynomial time. Under the Extended Riemann Hypothesis, almost all numbers can be written as the sum of four squares in deterministic polynomial time.






      share|cite|improve this answer











      $endgroup$















        18












        18








        18





        $begingroup$

        As far as I know, this is still an open problem. This is discussed in Section $5$ of the paper Finding the four squares in Lagrange's theorem by Pollack and Treviño. They mention that there is a deterministic polynomial-time algorithm when $n$ is a prime via quaterion multiplication, due to Bumby. Assuming a conjecture of Heath-Brown, there is a deterministic polynomial-time algorithm that works for all $n$. Finally, they mention that a positive proportion of all numbers can be written as the sum of four squares in deterministic polynomial time. Under the Extended Riemann Hypothesis, almost all numbers can be written as the sum of four squares in deterministic polynomial time.






        share|cite|improve this answer











        $endgroup$



        As far as I know, this is still an open problem. This is discussed in Section $5$ of the paper Finding the four squares in Lagrange's theorem by Pollack and Treviño. They mention that there is a deterministic polynomial-time algorithm when $n$ is a prime via quaterion multiplication, due to Bumby. Assuming a conjecture of Heath-Brown, there is a deterministic polynomial-time algorithm that works for all $n$. Finally, they mention that a positive proportion of all numbers can be written as the sum of four squares in deterministic polynomial time. Under the Extended Riemann Hypothesis, almost all numbers can be written as the sum of four squares in deterministic polynomial time.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 days ago

























        answered Apr 19 at 14:36









        Tony HuynhTony Huynh

        19.9k672131




        19.9k672131



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328449%2flagrange-four-squares-theorem-deterministic-complexity%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020