Regarding basis vectors of a Lie algebra.Are there finite-dimensional Lie algebras which are not defined over the integers?Direct sum decomposition of weight spaces and relation to Tensor products.Structure constants for and the adjoint representation and meaning in $sl(2,F)$Is a formal deformation of a Lie algebra an example of a formal group law?Basis of Lie Algebra $mathfraksu(3)$Regarding lower central series of a Lie algebra LRegarding Levi's decomposition of a Lie algebraRepresentation of $mathfrakgl(n,R)$ on $R[X_1,dots,X_n]$ over arbitrary ringWhat does the Jacobi identity impose on structure constants?Exercise 7.7.3 in Weibel (computation of $H^3(mathfraksl_2,k)$ via Chevalley-Eilenberg complex)

How to rename multiple files in a directory at the same time

Does addError() work outside of triggers?

Formal Definition of Dot Product

Why did Varys remove his rings?

How to not get blinded by an attack at dawn

What is the effect of the Feeblemind spell on Ability Score Improvements?

Can anyone give me examples of the relative-determinative 'which'?

​Cuban​ ​Primes

Polynomial division: Is this trick obvious?

Are there microwaves to heat baby food at Brussels airport?

Why is Drogon so much better in battle than Rhaegal and Viserion?

Will consteval functions allow template parameters dependent on function arguments?

It is as easy as A B C, Figure out U V C from the given relationship

Which creature is depicted in this Xanathar's Guide illustration of a war mage?

Wiring a 4 channel relay - is this possible?

tikz drawing rectangle discretized with triangle lattices and its centroids

Why are goodwill impairments on the statement of cash-flows of GE?

Developers demotivated due to working on same project for more than 2 years

What are the implications of XORing ciphertext with plaintext?

In season 17 does LoN buff work against season journey set rewards?

Holding rent money for my friend which amounts to over $10k?

Is my test coverage up to snuff?

c++ conditional uni-directional iterator

What do you call the hair or body hair you trim off your body?



Regarding basis vectors of a Lie algebra.


Are there finite-dimensional Lie algebras which are not defined over the integers?Direct sum decomposition of weight spaces and relation to Tensor products.Structure constants for and the adjoint representation and meaning in $sl(2,F)$Is a formal deformation of a Lie algebra an example of a formal group law?Basis of Lie Algebra $mathfraksu(3)$Regarding lower central series of a Lie algebra LRegarding Levi's decomposition of a Lie algebraRepresentation of $mathfrakgl(n,R)$ on $R[X_1,dots,X_n]$ over arbitrary ringWhat does the Jacobi identity impose on structure constants?Exercise 7.7.3 in Weibel (computation of $H^3(mathfraksl_2,k)$ via Chevalley-Eilenberg complex)













2












$begingroup$


From the book "Introduction to Lie Algebras" by Erdmann & Wildon:




If $L$ is a Lie algbra over a field $F$ with basis $(x_1,cdots, x_n)$, then $[-,-]$ is complete determined by the products $[x_i,x_j]$. We define scalars $a_ij^kin F$ such that $$[x_i,x_j]=sum_k=1^na_ij^kx_k$$ The $a_ij^k$ are the structure constants of $L$ with respect to this basis.




What does "completey determined by the products $[x_i,x_j]$" mean? Does it mean that $forall a,bin L$ $$[a,b]=sum_i,j,t^n,n,n^2c_t[x_i,x_j]=sum_i,j,t^n,n,n^2c_tBigl(sum_k=1^na_ij^kx_kBigr)$$ where $c_t in F$ ?










share|cite|improve this question









$endgroup$











  • $begingroup$
    What are $a$ and $b$?
    $endgroup$
    – Lord Shark the Unknown
    May 4 at 8:40










  • $begingroup$
    elements of $L$.
    $endgroup$
    – TheLast Cipher
    May 4 at 8:41










  • $begingroup$
    There's nothing corresponding to either $a$ or $b$ on the right side of your equation.
    $endgroup$
    – Lord Shark the Unknown
    May 4 at 8:44















2












$begingroup$


From the book "Introduction to Lie Algebras" by Erdmann & Wildon:




If $L$ is a Lie algbra over a field $F$ with basis $(x_1,cdots, x_n)$, then $[-,-]$ is complete determined by the products $[x_i,x_j]$. We define scalars $a_ij^kin F$ such that $$[x_i,x_j]=sum_k=1^na_ij^kx_k$$ The $a_ij^k$ are the structure constants of $L$ with respect to this basis.




What does "completey determined by the products $[x_i,x_j]$" mean? Does it mean that $forall a,bin L$ $$[a,b]=sum_i,j,t^n,n,n^2c_t[x_i,x_j]=sum_i,j,t^n,n,n^2c_tBigl(sum_k=1^na_ij^kx_kBigr)$$ where $c_t in F$ ?










share|cite|improve this question









$endgroup$











  • $begingroup$
    What are $a$ and $b$?
    $endgroup$
    – Lord Shark the Unknown
    May 4 at 8:40










  • $begingroup$
    elements of $L$.
    $endgroup$
    – TheLast Cipher
    May 4 at 8:41










  • $begingroup$
    There's nothing corresponding to either $a$ or $b$ on the right side of your equation.
    $endgroup$
    – Lord Shark the Unknown
    May 4 at 8:44













2












2








2





$begingroup$


From the book "Introduction to Lie Algebras" by Erdmann & Wildon:




If $L$ is a Lie algbra over a field $F$ with basis $(x_1,cdots, x_n)$, then $[-,-]$ is complete determined by the products $[x_i,x_j]$. We define scalars $a_ij^kin F$ such that $$[x_i,x_j]=sum_k=1^na_ij^kx_k$$ The $a_ij^k$ are the structure constants of $L$ with respect to this basis.




What does "completey determined by the products $[x_i,x_j]$" mean? Does it mean that $forall a,bin L$ $$[a,b]=sum_i,j,t^n,n,n^2c_t[x_i,x_j]=sum_i,j,t^n,n,n^2c_tBigl(sum_k=1^na_ij^kx_kBigr)$$ where $c_t in F$ ?










share|cite|improve this question









$endgroup$




From the book "Introduction to Lie Algebras" by Erdmann & Wildon:




If $L$ is a Lie algbra over a field $F$ with basis $(x_1,cdots, x_n)$, then $[-,-]$ is complete determined by the products $[x_i,x_j]$. We define scalars $a_ij^kin F$ such that $$[x_i,x_j]=sum_k=1^na_ij^kx_k$$ The $a_ij^k$ are the structure constants of $L$ with respect to this basis.




What does "completey determined by the products $[x_i,x_j]$" mean? Does it mean that $forall a,bin L$ $$[a,b]=sum_i,j,t^n,n,n^2c_t[x_i,x_j]=sum_i,j,t^n,n,n^2c_tBigl(sum_k=1^na_ij^kx_kBigr)$$ where $c_t in F$ ?







lie-algebras






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 4 at 8:26









TheLast CipherTheLast Cipher

789715




789715











  • $begingroup$
    What are $a$ and $b$?
    $endgroup$
    – Lord Shark the Unknown
    May 4 at 8:40










  • $begingroup$
    elements of $L$.
    $endgroup$
    – TheLast Cipher
    May 4 at 8:41










  • $begingroup$
    There's nothing corresponding to either $a$ or $b$ on the right side of your equation.
    $endgroup$
    – Lord Shark the Unknown
    May 4 at 8:44
















  • $begingroup$
    What are $a$ and $b$?
    $endgroup$
    – Lord Shark the Unknown
    May 4 at 8:40










  • $begingroup$
    elements of $L$.
    $endgroup$
    – TheLast Cipher
    May 4 at 8:41










  • $begingroup$
    There's nothing corresponding to either $a$ or $b$ on the right side of your equation.
    $endgroup$
    – Lord Shark the Unknown
    May 4 at 8:44















$begingroup$
What are $a$ and $b$?
$endgroup$
– Lord Shark the Unknown
May 4 at 8:40




$begingroup$
What are $a$ and $b$?
$endgroup$
– Lord Shark the Unknown
May 4 at 8:40












$begingroup$
elements of $L$.
$endgroup$
– TheLast Cipher
May 4 at 8:41




$begingroup$
elements of $L$.
$endgroup$
– TheLast Cipher
May 4 at 8:41












$begingroup$
There's nothing corresponding to either $a$ or $b$ on the right side of your equation.
$endgroup$
– Lord Shark the Unknown
May 4 at 8:44




$begingroup$
There's nothing corresponding to either $a$ or $b$ on the right side of your equation.
$endgroup$
– Lord Shark the Unknown
May 4 at 8:44










2 Answers
2






active

oldest

votes


















3












$begingroup$

A typical element of $L$ is $u=sum_i c_i x_i$, and I suppose another typical element of $L$ is $v=sum_j d_j x_j$. Then
$$[u,v]=sum_i,jc_id_j[x_i,x_j]
=sum_kleft(sum_i,ja_i,j^kc_id_jright)x_k.$$

This is nothing more than the bi-linearity of the Lie bracket.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    It means that there is only one Lie algebra structure $[cdot,cdot]$ on $L$ for which it is true that$$(forall i,jin1,2,ldots,n):[x_i,x_j]=sum_k=1^na_ij^kx_k.$$This follows from the fact that $x_1,ldots,x_n$ is a basis an that the Lie bracket is bilinear.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Thanks! I always get confused when my text says "the lie algebra $L$" and wonder if $L=(V,[-,-])$ where $V$ is some vector space. Where in fact, it mean there is a lie algebra on $L$ over $F$.
      $endgroup$
      – TheLast Cipher
      May 4 at 8:55











    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3213105%2fregarding-basis-vectors-of-a-lie-algebra%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    A typical element of $L$ is $u=sum_i c_i x_i$, and I suppose another typical element of $L$ is $v=sum_j d_j x_j$. Then
    $$[u,v]=sum_i,jc_id_j[x_i,x_j]
    =sum_kleft(sum_i,ja_i,j^kc_id_jright)x_k.$$

    This is nothing more than the bi-linearity of the Lie bracket.






    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      A typical element of $L$ is $u=sum_i c_i x_i$, and I suppose another typical element of $L$ is $v=sum_j d_j x_j$. Then
      $$[u,v]=sum_i,jc_id_j[x_i,x_j]
      =sum_kleft(sum_i,ja_i,j^kc_id_jright)x_k.$$

      This is nothing more than the bi-linearity of the Lie bracket.






      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        A typical element of $L$ is $u=sum_i c_i x_i$, and I suppose another typical element of $L$ is $v=sum_j d_j x_j$. Then
        $$[u,v]=sum_i,jc_id_j[x_i,x_j]
        =sum_kleft(sum_i,ja_i,j^kc_id_jright)x_k.$$

        This is nothing more than the bi-linearity of the Lie bracket.






        share|cite|improve this answer









        $endgroup$



        A typical element of $L$ is $u=sum_i c_i x_i$, and I suppose another typical element of $L$ is $v=sum_j d_j x_j$. Then
        $$[u,v]=sum_i,jc_id_j[x_i,x_j]
        =sum_kleft(sum_i,ja_i,j^kc_id_jright)x_k.$$

        This is nothing more than the bi-linearity of the Lie bracket.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered May 4 at 8:44









        Lord Shark the UnknownLord Shark the Unknown

        111k1163138




        111k1163138





















            2












            $begingroup$

            It means that there is only one Lie algebra structure $[cdot,cdot]$ on $L$ for which it is true that$$(forall i,jin1,2,ldots,n):[x_i,x_j]=sum_k=1^na_ij^kx_k.$$This follows from the fact that $x_1,ldots,x_n$ is a basis an that the Lie bracket is bilinear.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Thanks! I always get confused when my text says "the lie algebra $L$" and wonder if $L=(V,[-,-])$ where $V$ is some vector space. Where in fact, it mean there is a lie algebra on $L$ over $F$.
              $endgroup$
              – TheLast Cipher
              May 4 at 8:55















            2












            $begingroup$

            It means that there is only one Lie algebra structure $[cdot,cdot]$ on $L$ for which it is true that$$(forall i,jin1,2,ldots,n):[x_i,x_j]=sum_k=1^na_ij^kx_k.$$This follows from the fact that $x_1,ldots,x_n$ is a basis an that the Lie bracket is bilinear.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Thanks! I always get confused when my text says "the lie algebra $L$" and wonder if $L=(V,[-,-])$ where $V$ is some vector space. Where in fact, it mean there is a lie algebra on $L$ over $F$.
              $endgroup$
              – TheLast Cipher
              May 4 at 8:55













            2












            2








            2





            $begingroup$

            It means that there is only one Lie algebra structure $[cdot,cdot]$ on $L$ for which it is true that$$(forall i,jin1,2,ldots,n):[x_i,x_j]=sum_k=1^na_ij^kx_k.$$This follows from the fact that $x_1,ldots,x_n$ is a basis an that the Lie bracket is bilinear.






            share|cite|improve this answer









            $endgroup$



            It means that there is only one Lie algebra structure $[cdot,cdot]$ on $L$ for which it is true that$$(forall i,jin1,2,ldots,n):[x_i,x_j]=sum_k=1^na_ij^kx_k.$$This follows from the fact that $x_1,ldots,x_n$ is a basis an that the Lie bracket is bilinear.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered May 4 at 8:47









            José Carlos SantosJosé Carlos Santos

            183k24143257




            183k24143257











            • $begingroup$
              Thanks! I always get confused when my text says "the lie algebra $L$" and wonder if $L=(V,[-,-])$ where $V$ is some vector space. Where in fact, it mean there is a lie algebra on $L$ over $F$.
              $endgroup$
              – TheLast Cipher
              May 4 at 8:55
















            • $begingroup$
              Thanks! I always get confused when my text says "the lie algebra $L$" and wonder if $L=(V,[-,-])$ where $V$ is some vector space. Where in fact, it mean there is a lie algebra on $L$ over $F$.
              $endgroup$
              – TheLast Cipher
              May 4 at 8:55















            $begingroup$
            Thanks! I always get confused when my text says "the lie algebra $L$" and wonder if $L=(V,[-,-])$ where $V$ is some vector space. Where in fact, it mean there is a lie algebra on $L$ over $F$.
            $endgroup$
            – TheLast Cipher
            May 4 at 8:55




            $begingroup$
            Thanks! I always get confused when my text says "the lie algebra $L$" and wonder if $L=(V,[-,-])$ where $V$ is some vector space. Where in fact, it mean there is a lie algebra on $L$ over $F$.
            $endgroup$
            – TheLast Cipher
            May 4 at 8:55

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3213105%2fregarding-basis-vectors-of-a-lie-algebra%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020