Root of unity filterEvaluation of ratio of two binomial expressionCounting some vanishing polynomials in $mathbbZ_n[X]$Sum of every $k$th binomial coefficient.Sixth Root of UnityRoot of unity paradox$x^n+a_n-1x^n-1+cdots +a_1x+a_0=0$ has real coefficients which satisfy $0<a_0 le a_1 le cdots le a_n-1 le 1$ prove that $z$ is a rootWhat is the sum of ALL of the nth powers of the qth roots of unity?Confusion regarding logic in paper, “A NOTE ON THE INVERSION OF POWER SERIES,” published in the AMS journalProve that if B(0) = 0, then A(B(x)) is a formal power seriesFinding a polynomial with rational coefficients that has the reciprocal of a complex number as its rootfind $a_1+a_3+a_5+cdots+a_37+a_39$

Understanding Python syntax in lists vs series

Can my American children re-enter the USA by International flight with a passport card? Being that their passport book has expired

Is there an academic word that means "to split hairs over"?

Why are goodwill impairments on the statement of cash-flows of GE?

What color to choose as "danger" if the main color of my app is red

Would life always name the light from their sun "white"

What metal is most suitable for a ladder submerged in an underground water tank?

How will the lack of ground stations affect navigation?

How might a landlocked lake become a complete ecosystem?

Why did Varys remove his rings?

Slice a list based on an index and items behind it in python

Why did the metro bus stop at each railway crossing, despite no warning indicating a train was coming?

c++ conditional uni-directional iterator

Meaning of "legitimate" in Carl Jung's quote "Neurosis is always a substitute for legitimate suffering."

Does the Rogue's Reliable Talent feature work for thieves' tools, since the rogue is proficient in them?

How to not get blinded by an attack at dawn

Developers demotivated due to working on same project for more than 2 years

How could it be that 80% of townspeople were farmers during the Edo period in Japan?

What is the effect of the Feeblemind spell on Ability Score Improvements?

Holding rent money for my friend which amounts to over $10k?

Are there microwaves to heat baby food at Brussels airport?

Single word that parallels "Recent" when discussing the near future

the correct order of manual install WP and SSL on server

How did the horses get to space?



Root of unity filter


Evaluation of ratio of two binomial expressionCounting some vanishing polynomials in $mathbbZ_n[X]$Sum of every $k$th binomial coefficient.Sixth Root of UnityRoot of unity paradox$x^n+a_n-1x^n-1+cdots +a_1x+a_0=0$ has real coefficients which satisfy $0<a_0 le a_1 le cdots le a_n-1 le 1$ prove that $z$ is a rootWhat is the sum of ALL of the nth powers of the qth roots of unity?Confusion regarding logic in paper, “A NOTE ON THE INVERSION OF POWER SERIES,” published in the AMS journalProve that if B(0) = 0, then A(B(x)) is a formal power seriesFinding a polynomial with rational coefficients that has the reciprocal of a complex number as its rootfind $a_1+a_3+a_5+cdots+a_37+a_39$













3












$begingroup$


Can some one help me understand the technique called "Root of unity filter" . I just know how to use it. It's as follow:



For series $f(x)=a_0+a_1x+a_2x^2 cdots a_nx^n$ we need to find the sum of coefficient of terms in which the power is a multiple of any number say $k$ for finding the same we have $omega $ as $mathrmk^th$ of unity and write
$$ dfracf(1)+f(omega)+f(omega ^2) cdots (omega^k-1)k=(a_0 + a_k + a_2k cdots)$$



please help me understand why and how this works , I tried googling but didn't get any satisfactory answer










share|cite|improve this question









$endgroup$











  • $begingroup$
    Never heard of this, so I'm just curious. But what's the utility of this theorem when we know the polynomial directly? Isn't it better to directly sum the coefficients than to evaluate the entire polynomial at every root of unity up to the $k$th?
    $endgroup$
    – Allawonder
    May 4 at 9:43










  • $begingroup$
    I was doing a question which is as follow : $$(1+x)(1+x^2) cdots (1+x^2070)$$ we have to find the sum of coefficients of $x^9k$ to get the answer here we can easily find the answer using this tool , can you suggest another method @Allawonder
    $endgroup$
    – Advil Sell
    May 4 at 9:50











  • $begingroup$
    I now see how it may be used for facility in some cases. I had been simply thinking of a polynomial strictly in the form $sum a_nx^n.$
    $endgroup$
    – Allawonder
    May 4 at 9:52
















3












$begingroup$


Can some one help me understand the technique called "Root of unity filter" . I just know how to use it. It's as follow:



For series $f(x)=a_0+a_1x+a_2x^2 cdots a_nx^n$ we need to find the sum of coefficient of terms in which the power is a multiple of any number say $k$ for finding the same we have $omega $ as $mathrmk^th$ of unity and write
$$ dfracf(1)+f(omega)+f(omega ^2) cdots (omega^k-1)k=(a_0 + a_k + a_2k cdots)$$



please help me understand why and how this works , I tried googling but didn't get any satisfactory answer










share|cite|improve this question









$endgroup$











  • $begingroup$
    Never heard of this, so I'm just curious. But what's the utility of this theorem when we know the polynomial directly? Isn't it better to directly sum the coefficients than to evaluate the entire polynomial at every root of unity up to the $k$th?
    $endgroup$
    – Allawonder
    May 4 at 9:43










  • $begingroup$
    I was doing a question which is as follow : $$(1+x)(1+x^2) cdots (1+x^2070)$$ we have to find the sum of coefficients of $x^9k$ to get the answer here we can easily find the answer using this tool , can you suggest another method @Allawonder
    $endgroup$
    – Advil Sell
    May 4 at 9:50











  • $begingroup$
    I now see how it may be used for facility in some cases. I had been simply thinking of a polynomial strictly in the form $sum a_nx^n.$
    $endgroup$
    – Allawonder
    May 4 at 9:52














3












3








3


1



$begingroup$


Can some one help me understand the technique called "Root of unity filter" . I just know how to use it. It's as follow:



For series $f(x)=a_0+a_1x+a_2x^2 cdots a_nx^n$ we need to find the sum of coefficient of terms in which the power is a multiple of any number say $k$ for finding the same we have $omega $ as $mathrmk^th$ of unity and write
$$ dfracf(1)+f(omega)+f(omega ^2) cdots (omega^k-1)k=(a_0 + a_k + a_2k cdots)$$



please help me understand why and how this works , I tried googling but didn't get any satisfactory answer










share|cite|improve this question









$endgroup$




Can some one help me understand the technique called "Root of unity filter" . I just know how to use it. It's as follow:



For series $f(x)=a_0+a_1x+a_2x^2 cdots a_nx^n$ we need to find the sum of coefficient of terms in which the power is a multiple of any number say $k$ for finding the same we have $omega $ as $mathrmk^th$ of unity and write
$$ dfracf(1)+f(omega)+f(omega ^2) cdots (omega^k-1)k=(a_0 + a_k + a_2k cdots)$$



please help me understand why and how this works , I tried googling but didn't get any satisfactory answer







combinatorics complex-numbers binomial-theorem






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 4 at 9:16









Advil SellAdvil Sell

1509




1509











  • $begingroup$
    Never heard of this, so I'm just curious. But what's the utility of this theorem when we know the polynomial directly? Isn't it better to directly sum the coefficients than to evaluate the entire polynomial at every root of unity up to the $k$th?
    $endgroup$
    – Allawonder
    May 4 at 9:43










  • $begingroup$
    I was doing a question which is as follow : $$(1+x)(1+x^2) cdots (1+x^2070)$$ we have to find the sum of coefficients of $x^9k$ to get the answer here we can easily find the answer using this tool , can you suggest another method @Allawonder
    $endgroup$
    – Advil Sell
    May 4 at 9:50











  • $begingroup$
    I now see how it may be used for facility in some cases. I had been simply thinking of a polynomial strictly in the form $sum a_nx^n.$
    $endgroup$
    – Allawonder
    May 4 at 9:52

















  • $begingroup$
    Never heard of this, so I'm just curious. But what's the utility of this theorem when we know the polynomial directly? Isn't it better to directly sum the coefficients than to evaluate the entire polynomial at every root of unity up to the $k$th?
    $endgroup$
    – Allawonder
    May 4 at 9:43










  • $begingroup$
    I was doing a question which is as follow : $$(1+x)(1+x^2) cdots (1+x^2070)$$ we have to find the sum of coefficients of $x^9k$ to get the answer here we can easily find the answer using this tool , can you suggest another method @Allawonder
    $endgroup$
    – Advil Sell
    May 4 at 9:50











  • $begingroup$
    I now see how it may be used for facility in some cases. I had been simply thinking of a polynomial strictly in the form $sum a_nx^n.$
    $endgroup$
    – Allawonder
    May 4 at 9:52
















$begingroup$
Never heard of this, so I'm just curious. But what's the utility of this theorem when we know the polynomial directly? Isn't it better to directly sum the coefficients than to evaluate the entire polynomial at every root of unity up to the $k$th?
$endgroup$
– Allawonder
May 4 at 9:43




$begingroup$
Never heard of this, so I'm just curious. But what's the utility of this theorem when we know the polynomial directly? Isn't it better to directly sum the coefficients than to evaluate the entire polynomial at every root of unity up to the $k$th?
$endgroup$
– Allawonder
May 4 at 9:43












$begingroup$
I was doing a question which is as follow : $$(1+x)(1+x^2) cdots (1+x^2070)$$ we have to find the sum of coefficients of $x^9k$ to get the answer here we can easily find the answer using this tool , can you suggest another method @Allawonder
$endgroup$
– Advil Sell
May 4 at 9:50





$begingroup$
I was doing a question which is as follow : $$(1+x)(1+x^2) cdots (1+x^2070)$$ we have to find the sum of coefficients of $x^9k$ to get the answer here we can easily find the answer using this tool , can you suggest another method @Allawonder
$endgroup$
– Advil Sell
May 4 at 9:50













$begingroup$
I now see how it may be used for facility in some cases. I had been simply thinking of a polynomial strictly in the form $sum a_nx^n.$
$endgroup$
– Allawonder
May 4 at 9:52





$begingroup$
I now see how it may be used for facility in some cases. I had been simply thinking of a polynomial strictly in the form $sum a_nx^n.$
$endgroup$
– Allawonder
May 4 at 9:52











2 Answers
2






active

oldest

votes


















6












$begingroup$

Theorem: (Root of Unity Filter)



Define $omega=e^2pi i/n$ for a positive integer $n$. For any polynomial $F(x)=a_0+a_1x+a_2x^2+dots$(where we take $a_k=0$ if $k>deg(F)$), the sum $a_0+a_n+a_2n+...$ is given by $$a_0+a_n+a_2n+dots=frac1n(F(1)+F(omega)+dots+F(omega^n-1)$$



Proof: Let $s_k=1+omega^k+dots+omega^(n-1)k$



If $n$ divides $k$, then $omega^k=1$ and so $s_k=1+1+1dots+1=n$ otherwise $s_k=frac1-omega^nk1-omega^k=0$. So



$(F(1)+F(omega)+dots+F(omega^n-1)=a_0s_0+a_1s_1+a_2s_2+dots=n(a_0+a_n+a_2n+dots)$



Divide the both sides of the equation by $n$ and the proof is complete.



Source of my knowledge: http://zacharyabel.com/papers/Multi-GF_A06_MathRefl.pdf



There are some examples also which may help you. Please have a look at Problem $2 $ on page $3$.






share|cite|improve this answer











$endgroup$




















    1












    $begingroup$


    Hint: This technique is called series multisection.



    • Some instructive examples can be found in H.S. Wilf's book generatingfunctionology (2.4.5) to (2.4.9).


    • Setting $omega_r=expleft(frac2pi irright), rgeq 1$ an integral value, the formula
      beginalign*
      sum_k=0^leftlfloorfracn-arrightrfloorbinomna+krx^a+kr=frac1rsum_k=1^rleft(omega_r^kright)^-aleft(1+xomega_r^kright)^n, qquad 0leq aleq n,aleq r-1
      endalign*

      is stated as (6.20) in Binomial Identities Derived from Trigonometric and Exponential Series by H.W. Gould.




    An application proving a binomial identity can be found e.g. in this MSE answer.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3213142%2froot-of-unity-filter%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      Theorem: (Root of Unity Filter)



      Define $omega=e^2pi i/n$ for a positive integer $n$. For any polynomial $F(x)=a_0+a_1x+a_2x^2+dots$(where we take $a_k=0$ if $k>deg(F)$), the sum $a_0+a_n+a_2n+...$ is given by $$a_0+a_n+a_2n+dots=frac1n(F(1)+F(omega)+dots+F(omega^n-1)$$



      Proof: Let $s_k=1+omega^k+dots+omega^(n-1)k$



      If $n$ divides $k$, then $omega^k=1$ and so $s_k=1+1+1dots+1=n$ otherwise $s_k=frac1-omega^nk1-omega^k=0$. So



      $(F(1)+F(omega)+dots+F(omega^n-1)=a_0s_0+a_1s_1+a_2s_2+dots=n(a_0+a_n+a_2n+dots)$



      Divide the both sides of the equation by $n$ and the proof is complete.



      Source of my knowledge: http://zacharyabel.com/papers/Multi-GF_A06_MathRefl.pdf



      There are some examples also which may help you. Please have a look at Problem $2 $ on page $3$.






      share|cite|improve this answer











      $endgroup$

















        6












        $begingroup$

        Theorem: (Root of Unity Filter)



        Define $omega=e^2pi i/n$ for a positive integer $n$. For any polynomial $F(x)=a_0+a_1x+a_2x^2+dots$(where we take $a_k=0$ if $k>deg(F)$), the sum $a_0+a_n+a_2n+...$ is given by $$a_0+a_n+a_2n+dots=frac1n(F(1)+F(omega)+dots+F(omega^n-1)$$



        Proof: Let $s_k=1+omega^k+dots+omega^(n-1)k$



        If $n$ divides $k$, then $omega^k=1$ and so $s_k=1+1+1dots+1=n$ otherwise $s_k=frac1-omega^nk1-omega^k=0$. So



        $(F(1)+F(omega)+dots+F(omega^n-1)=a_0s_0+a_1s_1+a_2s_2+dots=n(a_0+a_n+a_2n+dots)$



        Divide the both sides of the equation by $n$ and the proof is complete.



        Source of my knowledge: http://zacharyabel.com/papers/Multi-GF_A06_MathRefl.pdf



        There are some examples also which may help you. Please have a look at Problem $2 $ on page $3$.






        share|cite|improve this answer











        $endgroup$















          6












          6








          6





          $begingroup$

          Theorem: (Root of Unity Filter)



          Define $omega=e^2pi i/n$ for a positive integer $n$. For any polynomial $F(x)=a_0+a_1x+a_2x^2+dots$(where we take $a_k=0$ if $k>deg(F)$), the sum $a_0+a_n+a_2n+...$ is given by $$a_0+a_n+a_2n+dots=frac1n(F(1)+F(omega)+dots+F(omega^n-1)$$



          Proof: Let $s_k=1+omega^k+dots+omega^(n-1)k$



          If $n$ divides $k$, then $omega^k=1$ and so $s_k=1+1+1dots+1=n$ otherwise $s_k=frac1-omega^nk1-omega^k=0$. So



          $(F(1)+F(omega)+dots+F(omega^n-1)=a_0s_0+a_1s_1+a_2s_2+dots=n(a_0+a_n+a_2n+dots)$



          Divide the both sides of the equation by $n$ and the proof is complete.



          Source of my knowledge: http://zacharyabel.com/papers/Multi-GF_A06_MathRefl.pdf



          There are some examples also which may help you. Please have a look at Problem $2 $ on page $3$.






          share|cite|improve this answer











          $endgroup$



          Theorem: (Root of Unity Filter)



          Define $omega=e^2pi i/n$ for a positive integer $n$. For any polynomial $F(x)=a_0+a_1x+a_2x^2+dots$(where we take $a_k=0$ if $k>deg(F)$), the sum $a_0+a_n+a_2n+...$ is given by $$a_0+a_n+a_2n+dots=frac1n(F(1)+F(omega)+dots+F(omega^n-1)$$



          Proof: Let $s_k=1+omega^k+dots+omega^(n-1)k$



          If $n$ divides $k$, then $omega^k=1$ and so $s_k=1+1+1dots+1=n$ otherwise $s_k=frac1-omega^nk1-omega^k=0$. So



          $(F(1)+F(omega)+dots+F(omega^n-1)=a_0s_0+a_1s_1+a_2s_2+dots=n(a_0+a_n+a_2n+dots)$



          Divide the both sides of the equation by $n$ and the proof is complete.



          Source of my knowledge: http://zacharyabel.com/papers/Multi-GF_A06_MathRefl.pdf



          There are some examples also which may help you. Please have a look at Problem $2 $ on page $3$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited May 4 at 9:49

























          answered May 4 at 9:35









          StammeringMathematicianStammeringMathematician

          3,0511326




          3,0511326





















              1












              $begingroup$


              Hint: This technique is called series multisection.



              • Some instructive examples can be found in H.S. Wilf's book generatingfunctionology (2.4.5) to (2.4.9).


              • Setting $omega_r=expleft(frac2pi irright), rgeq 1$ an integral value, the formula
                beginalign*
                sum_k=0^leftlfloorfracn-arrightrfloorbinomna+krx^a+kr=frac1rsum_k=1^rleft(omega_r^kright)^-aleft(1+xomega_r^kright)^n, qquad 0leq aleq n,aleq r-1
                endalign*

                is stated as (6.20) in Binomial Identities Derived from Trigonometric and Exponential Series by H.W. Gould.




              An application proving a binomial identity can be found e.g. in this MSE answer.






              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$


                Hint: This technique is called series multisection.



                • Some instructive examples can be found in H.S. Wilf's book generatingfunctionology (2.4.5) to (2.4.9).


                • Setting $omega_r=expleft(frac2pi irright), rgeq 1$ an integral value, the formula
                  beginalign*
                  sum_k=0^leftlfloorfracn-arrightrfloorbinomna+krx^a+kr=frac1rsum_k=1^rleft(omega_r^kright)^-aleft(1+xomega_r^kright)^n, qquad 0leq aleq n,aleq r-1
                  endalign*

                  is stated as (6.20) in Binomial Identities Derived from Trigonometric and Exponential Series by H.W. Gould.




                An application proving a binomial identity can be found e.g. in this MSE answer.






                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$


                  Hint: This technique is called series multisection.



                  • Some instructive examples can be found in H.S. Wilf's book generatingfunctionology (2.4.5) to (2.4.9).


                  • Setting $omega_r=expleft(frac2pi irright), rgeq 1$ an integral value, the formula
                    beginalign*
                    sum_k=0^leftlfloorfracn-arrightrfloorbinomna+krx^a+kr=frac1rsum_k=1^rleft(omega_r^kright)^-aleft(1+xomega_r^kright)^n, qquad 0leq aleq n,aleq r-1
                    endalign*

                    is stated as (6.20) in Binomial Identities Derived from Trigonometric and Exponential Series by H.W. Gould.




                  An application proving a binomial identity can be found e.g. in this MSE answer.






                  share|cite|improve this answer









                  $endgroup$




                  Hint: This technique is called series multisection.



                  • Some instructive examples can be found in H.S. Wilf's book generatingfunctionology (2.4.5) to (2.4.9).


                  • Setting $omega_r=expleft(frac2pi irright), rgeq 1$ an integral value, the formula
                    beginalign*
                    sum_k=0^leftlfloorfracn-arrightrfloorbinomna+krx^a+kr=frac1rsum_k=1^rleft(omega_r^kright)^-aleft(1+xomega_r^kright)^n, qquad 0leq aleq n,aleq r-1
                    endalign*

                    is stated as (6.20) in Binomial Identities Derived from Trigonometric and Exponential Series by H.W. Gould.




                  An application proving a binomial identity can be found e.g. in this MSE answer.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered May 5 at 20:34









                  Markus ScheuerMarkus Scheuer

                  65.3k461155




                  65.3k461155



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3213142%2froot-of-unity-filter%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                      Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                      Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020