hook-length formula: “Fibonaccized”hook-length formula: “Fibonaccized”: Part IINekrasov-Okounkov hook length formulaInequality for hook numbers in Young diagramspartitions into odd parts vs hooks and symplectic contentsan identity for a sum over partitionsLemmas involving two partitions of integershooks and contents: Part IA discrete operator begets even/odd polynomialsPartitions, $q$-polynomials and generating functionsPartitions and $q$-integersA link between hooks, contents and parts of a partition

hook-length formula: “Fibonaccized”


hook-length formula: “Fibonaccized”: Part IINekrasov-Okounkov hook length formulaInequality for hook numbers in Young diagramspartitions into odd parts vs hooks and symplectic contentsan identity for a sum over partitionsLemmas involving two partitions of integershooks and contents: Part IA discrete operator begets even/odd polynomialsPartitions, $q$-polynomials and generating functionsPartitions and $q$-integersA link between hooks, contents and parts of a partition













16












$begingroup$


Consider the Young diagram of a partition $lambda = (lambda_1,ldots,lambda_k)$. For a square $(i,j) in lambda$, define the hook numbers $h_(i,j) = lambda_i + lambda_j' -i - j +1$ where $lambda'$ is the conjugate of $lambda$.



The hook-length formula shows, in particular, that if $lambdavdash n$ then
$$text$n!prod_square,in,lambdafrac1h_square$ qquad textis an integer.$$
Recall the Fibonacci numbers $F(0)=0, , F(1)=1$ with $F(n)=F(n-1)+F(n-2)$. Define $[0]!_F=1$ and $[n]!_F=F(1)cdot F(2)cdots F(n)$ for $ngeq1$.




QUESTION. Is it true that
$$text$[n]!_Fprod_square,in,lambdafrac1F(h_square)$ qquad textis an integer?$$











share|cite|improve this question











$endgroup$







  • 5




    $begingroup$
    More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
    $endgroup$
    – darij grinberg
    2 days ago







  • 1




    $begingroup$
    Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
    $endgroup$
    – Noam D. Elkies
    2 days ago







  • 9




    $begingroup$
    Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
    $endgroup$
    – Sam Hopkins
    2 days ago






  • 1




    $begingroup$
    @darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
    $endgroup$
    – Fedor Petrov
    yesterday






  • 5




    $begingroup$
    For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
    $endgroup$
    – J. M. is not a mathematician
    yesterday















16












$begingroup$


Consider the Young diagram of a partition $lambda = (lambda_1,ldots,lambda_k)$. For a square $(i,j) in lambda$, define the hook numbers $h_(i,j) = lambda_i + lambda_j' -i - j +1$ where $lambda'$ is the conjugate of $lambda$.



The hook-length formula shows, in particular, that if $lambdavdash n$ then
$$text$n!prod_square,in,lambdafrac1h_square$ qquad textis an integer.$$
Recall the Fibonacci numbers $F(0)=0, , F(1)=1$ with $F(n)=F(n-1)+F(n-2)$. Define $[0]!_F=1$ and $[n]!_F=F(1)cdot F(2)cdots F(n)$ for $ngeq1$.




QUESTION. Is it true that
$$text$[n]!_Fprod_square,in,lambdafrac1F(h_square)$ qquad textis an integer?$$











share|cite|improve this question











$endgroup$







  • 5




    $begingroup$
    More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
    $endgroup$
    – darij grinberg
    2 days ago







  • 1




    $begingroup$
    Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
    $endgroup$
    – Noam D. Elkies
    2 days ago







  • 9




    $begingroup$
    Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
    $endgroup$
    – Sam Hopkins
    2 days ago






  • 1




    $begingroup$
    @darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
    $endgroup$
    – Fedor Petrov
    yesterday






  • 5




    $begingroup$
    For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
    $endgroup$
    – J. M. is not a mathematician
    yesterday













16












16








16


6



$begingroup$


Consider the Young diagram of a partition $lambda = (lambda_1,ldots,lambda_k)$. For a square $(i,j) in lambda$, define the hook numbers $h_(i,j) = lambda_i + lambda_j' -i - j +1$ where $lambda'$ is the conjugate of $lambda$.



The hook-length formula shows, in particular, that if $lambdavdash n$ then
$$text$n!prod_square,in,lambdafrac1h_square$ qquad textis an integer.$$
Recall the Fibonacci numbers $F(0)=0, , F(1)=1$ with $F(n)=F(n-1)+F(n-2)$. Define $[0]!_F=1$ and $[n]!_F=F(1)cdot F(2)cdots F(n)$ for $ngeq1$.




QUESTION. Is it true that
$$text$[n]!_Fprod_square,in,lambdafrac1F(h_square)$ qquad textis an integer?$$











share|cite|improve this question











$endgroup$




Consider the Young diagram of a partition $lambda = (lambda_1,ldots,lambda_k)$. For a square $(i,j) in lambda$, define the hook numbers $h_(i,j) = lambda_i + lambda_j' -i - j +1$ where $lambda'$ is the conjugate of $lambda$.



The hook-length formula shows, in particular, that if $lambdavdash n$ then
$$text$n!prod_square,in,lambdafrac1h_square$ qquad textis an integer.$$
Recall the Fibonacci numbers $F(0)=0, , F(1)=1$ with $F(n)=F(n-1)+F(n-2)$. Define $[0]!_F=1$ and $[n]!_F=F(1)cdot F(2)cdots F(n)$ for $ngeq1$.




QUESTION. Is it true that
$$text$[n]!_Fprod_square,in,lambdafrac1F(h_square)$ qquad textis an integer?$$








nt.number-theory co.combinatorics partitions algebraic-combinatorics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago







T. Amdeberhan

















asked 2 days ago









T. AmdeberhanT. Amdeberhan

18.1k229132




18.1k229132







  • 5




    $begingroup$
    More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
    $endgroup$
    – darij grinberg
    2 days ago







  • 1




    $begingroup$
    Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
    $endgroup$
    – Noam D. Elkies
    2 days ago







  • 9




    $begingroup$
    Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
    $endgroup$
    – Sam Hopkins
    2 days ago






  • 1




    $begingroup$
    @darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
    $endgroup$
    – Fedor Petrov
    yesterday






  • 5




    $begingroup$
    For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
    $endgroup$
    – J. M. is not a mathematician
    yesterday












  • 5




    $begingroup$
    More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
    $endgroup$
    – darij grinberg
    2 days ago







  • 1




    $begingroup$
    Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
    $endgroup$
    – Noam D. Elkies
    2 days ago







  • 9




    $begingroup$
    Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
    $endgroup$
    – Sam Hopkins
    2 days ago






  • 1




    $begingroup$
    @darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
    $endgroup$
    – Fedor Petrov
    yesterday






  • 5




    $begingroup$
    For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
    $endgroup$
    – J. M. is not a mathematician
    yesterday







5




5




$begingroup$
More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
$endgroup$
– darij grinberg
2 days ago





$begingroup$
More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
$endgroup$
– darij grinberg
2 days ago





1




1




$begingroup$
Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
$endgroup$
– Noam D. Elkies
2 days ago





$begingroup$
Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
$endgroup$
– Noam D. Elkies
2 days ago





9




9




$begingroup$
Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
$endgroup$
– Sam Hopkins
2 days ago




$begingroup$
Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
$endgroup$
– Sam Hopkins
2 days ago




1




1




$begingroup$
@darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
$endgroup$
– Fedor Petrov
yesterday




$begingroup$
@darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
$endgroup$
– Fedor Petrov
yesterday




5




5




$begingroup$
For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
$endgroup$
– J. M. is not a mathematician
yesterday




$begingroup$
For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
$endgroup$
– J. M. is not a mathematician
yesterday










2 Answers
2






active

oldest

votes


















10












$begingroup$

Sam is correct of course about $q$-hook formula. Below is a short self-contained proof not relying on such advanced combinatorics.



Denote $h_1>ldots>h_k$ the set of hook lengths of the first column of diagram $lambda$. Then the multiset of hooks is $cup_i=1^k 1,2,ldots,h_isetminus h_i-h_j:i<j$ and $n=sum_i h_i-frack(k-1)2$.



Recall that $F(m)=P_m(alpha,beta)=prod_dPhi_d(alpha,beta)=prod_d (Phi_d(alpha,beta))^eta_d(m)$, where



$alpha,beta=(1pm sqrt5)/2$;



$P_n(x,y)=x^n-1+x^n-2y+ldots+y^n-1$;



$Phi_d$ are homogeneous cyclotomic polynomials;



$eta_d(m)=chi_mathbbZ(m/d)$ (i.e., it equals to 1 if $d$ divides $m$, and to 0 otherwise).



Therefore it suffices to prove that for any fixed $d>1$ we have
$$
sum_m=1^n eta_d(m)+sum_i<jeta_d(h_i-h_j)-sum_i=1^ksum_j=1^h_ieta_d(j)geqslant 0.quad (ast)
$$

$(ast)$ rewrites as
$$
[n/d]+|i<j:h_iequiv h_j pmod d|-sum_i=1^k [h_i/d]geqslant 0.quad (bullet)
$$

LHS of $(bullet)$ does not change if we reduce all $h_i$'s modulo $d$ (and accordingly change $n=sum_i h_i-frack(k-1)2$, of course), so we may suppose that $0leqslant h_ileqslant d-1$ for all $i$. For $a=0,1,dots, d-1$ denote $t_a=|i:h_i=a|$. Then $(bullet)$ rewrites as
$$
left[frac-binomsum_i=0^d-1 t_i2+sum_i=0^d-1 it_idright]+
sum_i=0^d-1 binomt_i2geqslant 0. quad (star)
$$



It remains to observe that LHS of $(star)$ equals to
$$
left[frac1dsum_i<jbinomt_i-t_j2 right].
$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Nice. So what does this integer count?
    $endgroup$
    – Brian Hopkins
    yesterday










  • $begingroup$
    Yes, that was my plan to ask next.
    $endgroup$
    – T. Amdeberhan
    yesterday











  • $begingroup$
    @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
    $endgroup$
    – T. Amdeberhan
    12 hours ago










  • $begingroup$
    @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
    $endgroup$
    – Fedor Petrov
    11 hours ago


















2












$begingroup$

This is a less elementary but maybe more conceptual proof, also giving some combinatorial meaning:
Use the formulas
$F(n) = fracvarphi^n -psi^nsqrt5$, $varphi =frac1+sqrt52, psi = frac1-sqrt52$. Let $q=fracpsivarphi = fracsqrt5-32$, so that
$F(n) = fracvarphi^nsqrt5 (1-q^n)$



Then the Fibonacci hook-length formula becomes:
DeclareMathOperatorlalambda



beginalign*
f^lambda_F:= frac[n]!_Fprod_uin lambdaF(h(u)) = frac varphi^ binomn+12 [n]!_q varphi^sum_u in lambda h(u) prod_u in lambda (1-q^h(u))
endalign*

So we have an ordinary $q$-analogue of the hook-length formula. Note that
$$sum_u in lambda h(u) = sum_i binomlambda_i2 + binomlambda'_j2 + |lambda| = b(lambda) +b(lambda') +n$$
Using the $q-$analogue hook-length formula via major index (EC2, Chapter 21) we have



beginalign*
f^lambda_F = varphi^ binomn2 -b(lambda)-b(lambda') q^-b(lambda) sum_Tin SYT(lambda) q^maj(T) = (-q)^frac12( -binomn2 +b(lambda') -b(lambda))sum_T q^maj(T)
endalign*



Now, it is clear from the q-HLF formula that $q^maj(T)$ is a symmetric polynomial, with lowest degree term $b(lambda)$ and maximal degree $b(lambda) + binomn+12 - n -b(lambda) -b(lambda') =binomn2 - b(lambda')$ so the median degree term is
$$M=frac12 left(b(lambda) +binomn2 - b(lambda')right)$$
which cancels with the factor of $q$ in $f^lambda_F$, so the resulting polynomial is of the form
beginalign*
f^lambda_F = (-1)^M sum_T: maj(T) leq M (q^M-maj(T) + q^maj(T)-M) \
= (-1)^M sum_T (-1)^M-maj(T)( varphi^2(M-maj(T)) + psi^2(M-maj(T)) =
sum_T (-1)^maj(T) L(2(M-maj(T)))
endalign*

where $L$ are the Lucas numbers.



**byproduct of collaborations with A. Morales and I. Pak.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326860%2fhook-length-formula-fibonaccized%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    Sam is correct of course about $q$-hook formula. Below is a short self-contained proof not relying on such advanced combinatorics.



    Denote $h_1>ldots>h_k$ the set of hook lengths of the first column of diagram $lambda$. Then the multiset of hooks is $cup_i=1^k 1,2,ldots,h_isetminus h_i-h_j:i<j$ and $n=sum_i h_i-frack(k-1)2$.



    Recall that $F(m)=P_m(alpha,beta)=prod_dPhi_d(alpha,beta)=prod_d (Phi_d(alpha,beta))^eta_d(m)$, where



    $alpha,beta=(1pm sqrt5)/2$;



    $P_n(x,y)=x^n-1+x^n-2y+ldots+y^n-1$;



    $Phi_d$ are homogeneous cyclotomic polynomials;



    $eta_d(m)=chi_mathbbZ(m/d)$ (i.e., it equals to 1 if $d$ divides $m$, and to 0 otherwise).



    Therefore it suffices to prove that for any fixed $d>1$ we have
    $$
    sum_m=1^n eta_d(m)+sum_i<jeta_d(h_i-h_j)-sum_i=1^ksum_j=1^h_ieta_d(j)geqslant 0.quad (ast)
    $$

    $(ast)$ rewrites as
    $$
    [n/d]+|i<j:h_iequiv h_j pmod d|-sum_i=1^k [h_i/d]geqslant 0.quad (bullet)
    $$

    LHS of $(bullet)$ does not change if we reduce all $h_i$'s modulo $d$ (and accordingly change $n=sum_i h_i-frack(k-1)2$, of course), so we may suppose that $0leqslant h_ileqslant d-1$ for all $i$. For $a=0,1,dots, d-1$ denote $t_a=|i:h_i=a|$. Then $(bullet)$ rewrites as
    $$
    left[frac-binomsum_i=0^d-1 t_i2+sum_i=0^d-1 it_idright]+
    sum_i=0^d-1 binomt_i2geqslant 0. quad (star)
    $$



    It remains to observe that LHS of $(star)$ equals to
    $$
    left[frac1dsum_i<jbinomt_i-t_j2 right].
    $$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Nice. So what does this integer count?
      $endgroup$
      – Brian Hopkins
      yesterday










    • $begingroup$
      Yes, that was my plan to ask next.
      $endgroup$
      – T. Amdeberhan
      yesterday











    • $begingroup$
      @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
      $endgroup$
      – T. Amdeberhan
      12 hours ago










    • $begingroup$
      @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
      $endgroup$
      – Fedor Petrov
      11 hours ago















    10












    $begingroup$

    Sam is correct of course about $q$-hook formula. Below is a short self-contained proof not relying on such advanced combinatorics.



    Denote $h_1>ldots>h_k$ the set of hook lengths of the first column of diagram $lambda$. Then the multiset of hooks is $cup_i=1^k 1,2,ldots,h_isetminus h_i-h_j:i<j$ and $n=sum_i h_i-frack(k-1)2$.



    Recall that $F(m)=P_m(alpha,beta)=prod_dPhi_d(alpha,beta)=prod_d (Phi_d(alpha,beta))^eta_d(m)$, where



    $alpha,beta=(1pm sqrt5)/2$;



    $P_n(x,y)=x^n-1+x^n-2y+ldots+y^n-1$;



    $Phi_d$ are homogeneous cyclotomic polynomials;



    $eta_d(m)=chi_mathbbZ(m/d)$ (i.e., it equals to 1 if $d$ divides $m$, and to 0 otherwise).



    Therefore it suffices to prove that for any fixed $d>1$ we have
    $$
    sum_m=1^n eta_d(m)+sum_i<jeta_d(h_i-h_j)-sum_i=1^ksum_j=1^h_ieta_d(j)geqslant 0.quad (ast)
    $$

    $(ast)$ rewrites as
    $$
    [n/d]+|i<j:h_iequiv h_j pmod d|-sum_i=1^k [h_i/d]geqslant 0.quad (bullet)
    $$

    LHS of $(bullet)$ does not change if we reduce all $h_i$'s modulo $d$ (and accordingly change $n=sum_i h_i-frack(k-1)2$, of course), so we may suppose that $0leqslant h_ileqslant d-1$ for all $i$. For $a=0,1,dots, d-1$ denote $t_a=|i:h_i=a|$. Then $(bullet)$ rewrites as
    $$
    left[frac-binomsum_i=0^d-1 t_i2+sum_i=0^d-1 it_idright]+
    sum_i=0^d-1 binomt_i2geqslant 0. quad (star)
    $$



    It remains to observe that LHS of $(star)$ equals to
    $$
    left[frac1dsum_i<jbinomt_i-t_j2 right].
    $$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Nice. So what does this integer count?
      $endgroup$
      – Brian Hopkins
      yesterday










    • $begingroup$
      Yes, that was my plan to ask next.
      $endgroup$
      – T. Amdeberhan
      yesterday











    • $begingroup$
      @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
      $endgroup$
      – T. Amdeberhan
      12 hours ago










    • $begingroup$
      @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
      $endgroup$
      – Fedor Petrov
      11 hours ago













    10












    10








    10





    $begingroup$

    Sam is correct of course about $q$-hook formula. Below is a short self-contained proof not relying on such advanced combinatorics.



    Denote $h_1>ldots>h_k$ the set of hook lengths of the first column of diagram $lambda$. Then the multiset of hooks is $cup_i=1^k 1,2,ldots,h_isetminus h_i-h_j:i<j$ and $n=sum_i h_i-frack(k-1)2$.



    Recall that $F(m)=P_m(alpha,beta)=prod_dPhi_d(alpha,beta)=prod_d (Phi_d(alpha,beta))^eta_d(m)$, where



    $alpha,beta=(1pm sqrt5)/2$;



    $P_n(x,y)=x^n-1+x^n-2y+ldots+y^n-1$;



    $Phi_d$ are homogeneous cyclotomic polynomials;



    $eta_d(m)=chi_mathbbZ(m/d)$ (i.e., it equals to 1 if $d$ divides $m$, and to 0 otherwise).



    Therefore it suffices to prove that for any fixed $d>1$ we have
    $$
    sum_m=1^n eta_d(m)+sum_i<jeta_d(h_i-h_j)-sum_i=1^ksum_j=1^h_ieta_d(j)geqslant 0.quad (ast)
    $$

    $(ast)$ rewrites as
    $$
    [n/d]+|i<j:h_iequiv h_j pmod d|-sum_i=1^k [h_i/d]geqslant 0.quad (bullet)
    $$

    LHS of $(bullet)$ does not change if we reduce all $h_i$'s modulo $d$ (and accordingly change $n=sum_i h_i-frack(k-1)2$, of course), so we may suppose that $0leqslant h_ileqslant d-1$ for all $i$. For $a=0,1,dots, d-1$ denote $t_a=|i:h_i=a|$. Then $(bullet)$ rewrites as
    $$
    left[frac-binomsum_i=0^d-1 t_i2+sum_i=0^d-1 it_idright]+
    sum_i=0^d-1 binomt_i2geqslant 0. quad (star)
    $$



    It remains to observe that LHS of $(star)$ equals to
    $$
    left[frac1dsum_i<jbinomt_i-t_j2 right].
    $$






    share|cite|improve this answer











    $endgroup$



    Sam is correct of course about $q$-hook formula. Below is a short self-contained proof not relying on such advanced combinatorics.



    Denote $h_1>ldots>h_k$ the set of hook lengths of the first column of diagram $lambda$. Then the multiset of hooks is $cup_i=1^k 1,2,ldots,h_isetminus h_i-h_j:i<j$ and $n=sum_i h_i-frack(k-1)2$.



    Recall that $F(m)=P_m(alpha,beta)=prod_dPhi_d(alpha,beta)=prod_d (Phi_d(alpha,beta))^eta_d(m)$, where



    $alpha,beta=(1pm sqrt5)/2$;



    $P_n(x,y)=x^n-1+x^n-2y+ldots+y^n-1$;



    $Phi_d$ are homogeneous cyclotomic polynomials;



    $eta_d(m)=chi_mathbbZ(m/d)$ (i.e., it equals to 1 if $d$ divides $m$, and to 0 otherwise).



    Therefore it suffices to prove that for any fixed $d>1$ we have
    $$
    sum_m=1^n eta_d(m)+sum_i<jeta_d(h_i-h_j)-sum_i=1^ksum_j=1^h_ieta_d(j)geqslant 0.quad (ast)
    $$

    $(ast)$ rewrites as
    $$
    [n/d]+|i<j:h_iequiv h_j pmod d|-sum_i=1^k [h_i/d]geqslant 0.quad (bullet)
    $$

    LHS of $(bullet)$ does not change if we reduce all $h_i$'s modulo $d$ (and accordingly change $n=sum_i h_i-frack(k-1)2$, of course), so we may suppose that $0leqslant h_ileqslant d-1$ for all $i$. For $a=0,1,dots, d-1$ denote $t_a=|i:h_i=a|$. Then $(bullet)$ rewrites as
    $$
    left[frac-binomsum_i=0^d-1 t_i2+sum_i=0^d-1 it_idright]+
    sum_i=0^d-1 binomt_i2geqslant 0. quad (star)
    $$



    It remains to observe that LHS of $(star)$ equals to
    $$
    left[frac1dsum_i<jbinomt_i-t_j2 right].
    $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 11 hours ago

























    answered yesterday









    Fedor PetrovFedor Petrov

    51.5k6120237




    51.5k6120237











    • $begingroup$
      Nice. So what does this integer count?
      $endgroup$
      – Brian Hopkins
      yesterday










    • $begingroup$
      Yes, that was my plan to ask next.
      $endgroup$
      – T. Amdeberhan
      yesterday











    • $begingroup$
      @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
      $endgroup$
      – T. Amdeberhan
      12 hours ago










    • $begingroup$
      @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
      $endgroup$
      – Fedor Petrov
      11 hours ago
















    • $begingroup$
      Nice. So what does this integer count?
      $endgroup$
      – Brian Hopkins
      yesterday










    • $begingroup$
      Yes, that was my plan to ask next.
      $endgroup$
      – T. Amdeberhan
      yesterday











    • $begingroup$
      @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
      $endgroup$
      – T. Amdeberhan
      12 hours ago










    • $begingroup$
      @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
      $endgroup$
      – Fedor Petrov
      11 hours ago















    $begingroup$
    Nice. So what does this integer count?
    $endgroup$
    – Brian Hopkins
    yesterday




    $begingroup$
    Nice. So what does this integer count?
    $endgroup$
    – Brian Hopkins
    yesterday












    $begingroup$
    Yes, that was my plan to ask next.
    $endgroup$
    – T. Amdeberhan
    yesterday





    $begingroup$
    Yes, that was my plan to ask next.
    $endgroup$
    – T. Amdeberhan
    yesterday













    $begingroup$
    @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
    $endgroup$
    – T. Amdeberhan
    12 hours ago




    $begingroup$
    @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
    $endgroup$
    – T. Amdeberhan
    12 hours ago












    $begingroup$
    @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
    $endgroup$
    – Fedor Petrov
    11 hours ago




    $begingroup$
    @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
    $endgroup$
    – Fedor Petrov
    11 hours ago











    2












    $begingroup$

    This is a less elementary but maybe more conceptual proof, also giving some combinatorial meaning:
    Use the formulas
    $F(n) = fracvarphi^n -psi^nsqrt5$, $varphi =frac1+sqrt52, psi = frac1-sqrt52$. Let $q=fracpsivarphi = fracsqrt5-32$, so that
    $F(n) = fracvarphi^nsqrt5 (1-q^n)$



    Then the Fibonacci hook-length formula becomes:
    DeclareMathOperatorlalambda



    beginalign*
    f^lambda_F:= frac[n]!_Fprod_uin lambdaF(h(u)) = frac varphi^ binomn+12 [n]!_q varphi^sum_u in lambda h(u) prod_u in lambda (1-q^h(u))
    endalign*

    So we have an ordinary $q$-analogue of the hook-length formula. Note that
    $$sum_u in lambda h(u) = sum_i binomlambda_i2 + binomlambda'_j2 + |lambda| = b(lambda) +b(lambda') +n$$
    Using the $q-$analogue hook-length formula via major index (EC2, Chapter 21) we have



    beginalign*
    f^lambda_F = varphi^ binomn2 -b(lambda)-b(lambda') q^-b(lambda) sum_Tin SYT(lambda) q^maj(T) = (-q)^frac12( -binomn2 +b(lambda') -b(lambda))sum_T q^maj(T)
    endalign*



    Now, it is clear from the q-HLF formula that $q^maj(T)$ is a symmetric polynomial, with lowest degree term $b(lambda)$ and maximal degree $b(lambda) + binomn+12 - n -b(lambda) -b(lambda') =binomn2 - b(lambda')$ so the median degree term is
    $$M=frac12 left(b(lambda) +binomn2 - b(lambda')right)$$
    which cancels with the factor of $q$ in $f^lambda_F$, so the resulting polynomial is of the form
    beginalign*
    f^lambda_F = (-1)^M sum_T: maj(T) leq M (q^M-maj(T) + q^maj(T)-M) \
    = (-1)^M sum_T (-1)^M-maj(T)( varphi^2(M-maj(T)) + psi^2(M-maj(T)) =
    sum_T (-1)^maj(T) L(2(M-maj(T)))
    endalign*

    where $L$ are the Lucas numbers.



    **byproduct of collaborations with A. Morales and I. Pak.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      This is a less elementary but maybe more conceptual proof, also giving some combinatorial meaning:
      Use the formulas
      $F(n) = fracvarphi^n -psi^nsqrt5$, $varphi =frac1+sqrt52, psi = frac1-sqrt52$. Let $q=fracpsivarphi = fracsqrt5-32$, so that
      $F(n) = fracvarphi^nsqrt5 (1-q^n)$



      Then the Fibonacci hook-length formula becomes:
      DeclareMathOperatorlalambda



      beginalign*
      f^lambda_F:= frac[n]!_Fprod_uin lambdaF(h(u)) = frac varphi^ binomn+12 [n]!_q varphi^sum_u in lambda h(u) prod_u in lambda (1-q^h(u))
      endalign*

      So we have an ordinary $q$-analogue of the hook-length formula. Note that
      $$sum_u in lambda h(u) = sum_i binomlambda_i2 + binomlambda'_j2 + |lambda| = b(lambda) +b(lambda') +n$$
      Using the $q-$analogue hook-length formula via major index (EC2, Chapter 21) we have



      beginalign*
      f^lambda_F = varphi^ binomn2 -b(lambda)-b(lambda') q^-b(lambda) sum_Tin SYT(lambda) q^maj(T) = (-q)^frac12( -binomn2 +b(lambda') -b(lambda))sum_T q^maj(T)
      endalign*



      Now, it is clear from the q-HLF formula that $q^maj(T)$ is a symmetric polynomial, with lowest degree term $b(lambda)$ and maximal degree $b(lambda) + binomn+12 - n -b(lambda) -b(lambda') =binomn2 - b(lambda')$ so the median degree term is
      $$M=frac12 left(b(lambda) +binomn2 - b(lambda')right)$$
      which cancels with the factor of $q$ in $f^lambda_F$, so the resulting polynomial is of the form
      beginalign*
      f^lambda_F = (-1)^M sum_T: maj(T) leq M (q^M-maj(T) + q^maj(T)-M) \
      = (-1)^M sum_T (-1)^M-maj(T)( varphi^2(M-maj(T)) + psi^2(M-maj(T)) =
      sum_T (-1)^maj(T) L(2(M-maj(T)))
      endalign*

      where $L$ are the Lucas numbers.



      **byproduct of collaborations with A. Morales and I. Pak.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        This is a less elementary but maybe more conceptual proof, also giving some combinatorial meaning:
        Use the formulas
        $F(n) = fracvarphi^n -psi^nsqrt5$, $varphi =frac1+sqrt52, psi = frac1-sqrt52$. Let $q=fracpsivarphi = fracsqrt5-32$, so that
        $F(n) = fracvarphi^nsqrt5 (1-q^n)$



        Then the Fibonacci hook-length formula becomes:
        DeclareMathOperatorlalambda



        beginalign*
        f^lambda_F:= frac[n]!_Fprod_uin lambdaF(h(u)) = frac varphi^ binomn+12 [n]!_q varphi^sum_u in lambda h(u) prod_u in lambda (1-q^h(u))
        endalign*

        So we have an ordinary $q$-analogue of the hook-length formula. Note that
        $$sum_u in lambda h(u) = sum_i binomlambda_i2 + binomlambda'_j2 + |lambda| = b(lambda) +b(lambda') +n$$
        Using the $q-$analogue hook-length formula via major index (EC2, Chapter 21) we have



        beginalign*
        f^lambda_F = varphi^ binomn2 -b(lambda)-b(lambda') q^-b(lambda) sum_Tin SYT(lambda) q^maj(T) = (-q)^frac12( -binomn2 +b(lambda') -b(lambda))sum_T q^maj(T)
        endalign*



        Now, it is clear from the q-HLF formula that $q^maj(T)$ is a symmetric polynomial, with lowest degree term $b(lambda)$ and maximal degree $b(lambda) + binomn+12 - n -b(lambda) -b(lambda') =binomn2 - b(lambda')$ so the median degree term is
        $$M=frac12 left(b(lambda) +binomn2 - b(lambda')right)$$
        which cancels with the factor of $q$ in $f^lambda_F$, so the resulting polynomial is of the form
        beginalign*
        f^lambda_F = (-1)^M sum_T: maj(T) leq M (q^M-maj(T) + q^maj(T)-M) \
        = (-1)^M sum_T (-1)^M-maj(T)( varphi^2(M-maj(T)) + psi^2(M-maj(T)) =
        sum_T (-1)^maj(T) L(2(M-maj(T)))
        endalign*

        where $L$ are the Lucas numbers.



        **byproduct of collaborations with A. Morales and I. Pak.






        share|cite|improve this answer









        $endgroup$



        This is a less elementary but maybe more conceptual proof, also giving some combinatorial meaning:
        Use the formulas
        $F(n) = fracvarphi^n -psi^nsqrt5$, $varphi =frac1+sqrt52, psi = frac1-sqrt52$. Let $q=fracpsivarphi = fracsqrt5-32$, so that
        $F(n) = fracvarphi^nsqrt5 (1-q^n)$



        Then the Fibonacci hook-length formula becomes:
        DeclareMathOperatorlalambda



        beginalign*
        f^lambda_F:= frac[n]!_Fprod_uin lambdaF(h(u)) = frac varphi^ binomn+12 [n]!_q varphi^sum_u in lambda h(u) prod_u in lambda (1-q^h(u))
        endalign*

        So we have an ordinary $q$-analogue of the hook-length formula. Note that
        $$sum_u in lambda h(u) = sum_i binomlambda_i2 + binomlambda'_j2 + |lambda| = b(lambda) +b(lambda') +n$$
        Using the $q-$analogue hook-length formula via major index (EC2, Chapter 21) we have



        beginalign*
        f^lambda_F = varphi^ binomn2 -b(lambda)-b(lambda') q^-b(lambda) sum_Tin SYT(lambda) q^maj(T) = (-q)^frac12( -binomn2 +b(lambda') -b(lambda))sum_T q^maj(T)
        endalign*



        Now, it is clear from the q-HLF formula that $q^maj(T)$ is a symmetric polynomial, with lowest degree term $b(lambda)$ and maximal degree $b(lambda) + binomn+12 - n -b(lambda) -b(lambda') =binomn2 - b(lambda')$ so the median degree term is
        $$M=frac12 left(b(lambda) +binomn2 - b(lambda')right)$$
        which cancels with the factor of $q$ in $f^lambda_F$, so the resulting polynomial is of the form
        beginalign*
        f^lambda_F = (-1)^M sum_T: maj(T) leq M (q^M-maj(T) + q^maj(T)-M) \
        = (-1)^M sum_T (-1)^M-maj(T)( varphi^2(M-maj(T)) + psi^2(M-maj(T)) =
        sum_T (-1)^maj(T) L(2(M-maj(T)))
        endalign*

        where $L$ are the Lucas numbers.



        **byproduct of collaborations with A. Morales and I. Pak.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 41 mins ago









        Greta PanovaGreta Panova

        15613




        15613



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326860%2fhook-length-formula-fibonaccized%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020