hook-length formula: “Fibonaccized”hook-length formula: “Fibonaccized”: Part IINekrasov-Okounkov hook length formulaInequality for hook numbers in Young diagramspartitions into odd parts vs hooks and symplectic contentsan identity for a sum over partitionsLemmas involving two partitions of integershooks and contents: Part IA discrete operator begets even/odd polynomialsPartitions, $q$-polynomials and generating functionsPartitions and $q$-integersA link between hooks, contents and parts of a partition

Multi tool use
Multi tool use

hook-length formula: “Fibonaccized”


hook-length formula: “Fibonaccized”: Part IINekrasov-Okounkov hook length formulaInequality for hook numbers in Young diagramspartitions into odd parts vs hooks and symplectic contentsan identity for a sum over partitionsLemmas involving two partitions of integershooks and contents: Part IA discrete operator begets even/odd polynomialsPartitions, $q$-polynomials and generating functionsPartitions and $q$-integersA link between hooks, contents and parts of a partition













16












$begingroup$


Consider the Young diagram of a partition $lambda = (lambda_1,ldots,lambda_k)$. For a square $(i,j) in lambda$, define the hook numbers $h_(i,j) = lambda_i + lambda_j' -i - j +1$ where $lambda'$ is the conjugate of $lambda$.



The hook-length formula shows, in particular, that if $lambdavdash n$ then
$$text$n!prod_square,in,lambdafrac1h_square$ qquad textis an integer.$$
Recall the Fibonacci numbers $F(0)=0, , F(1)=1$ with $F(n)=F(n-1)+F(n-2)$. Define $[0]!_F=1$ and $[n]!_F=F(1)cdot F(2)cdots F(n)$ for $ngeq1$.




QUESTION. Is it true that
$$text$[n]!_Fprod_square,in,lambdafrac1F(h_square)$ qquad textis an integer?$$











share|cite|improve this question











$endgroup$







  • 5




    $begingroup$
    More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
    $endgroup$
    – darij grinberg
    2 days ago







  • 1




    $begingroup$
    Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
    $endgroup$
    – Noam D. Elkies
    2 days ago







  • 9




    $begingroup$
    Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
    $endgroup$
    – Sam Hopkins
    2 days ago






  • 1




    $begingroup$
    @darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
    $endgroup$
    – Fedor Petrov
    yesterday






  • 5




    $begingroup$
    For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
    $endgroup$
    – J. M. is not a mathematician
    yesterday















16












$begingroup$


Consider the Young diagram of a partition $lambda = (lambda_1,ldots,lambda_k)$. For a square $(i,j) in lambda$, define the hook numbers $h_(i,j) = lambda_i + lambda_j' -i - j +1$ where $lambda'$ is the conjugate of $lambda$.



The hook-length formula shows, in particular, that if $lambdavdash n$ then
$$text$n!prod_square,in,lambdafrac1h_square$ qquad textis an integer.$$
Recall the Fibonacci numbers $F(0)=0, , F(1)=1$ with $F(n)=F(n-1)+F(n-2)$. Define $[0]!_F=1$ and $[n]!_F=F(1)cdot F(2)cdots F(n)$ for $ngeq1$.




QUESTION. Is it true that
$$text$[n]!_Fprod_square,in,lambdafrac1F(h_square)$ qquad textis an integer?$$











share|cite|improve this question











$endgroup$







  • 5




    $begingroup$
    More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
    $endgroup$
    – darij grinberg
    2 days ago







  • 1




    $begingroup$
    Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
    $endgroup$
    – Noam D. Elkies
    2 days ago







  • 9




    $begingroup$
    Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
    $endgroup$
    – Sam Hopkins
    2 days ago






  • 1




    $begingroup$
    @darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
    $endgroup$
    – Fedor Petrov
    yesterday






  • 5




    $begingroup$
    For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
    $endgroup$
    – J. M. is not a mathematician
    yesterday













16












16








16


6



$begingroup$


Consider the Young diagram of a partition $lambda = (lambda_1,ldots,lambda_k)$. For a square $(i,j) in lambda$, define the hook numbers $h_(i,j) = lambda_i + lambda_j' -i - j +1$ where $lambda'$ is the conjugate of $lambda$.



The hook-length formula shows, in particular, that if $lambdavdash n$ then
$$text$n!prod_square,in,lambdafrac1h_square$ qquad textis an integer.$$
Recall the Fibonacci numbers $F(0)=0, , F(1)=1$ with $F(n)=F(n-1)+F(n-2)$. Define $[0]!_F=1$ and $[n]!_F=F(1)cdot F(2)cdots F(n)$ for $ngeq1$.




QUESTION. Is it true that
$$text$[n]!_Fprod_square,in,lambdafrac1F(h_square)$ qquad textis an integer?$$











share|cite|improve this question











$endgroup$




Consider the Young diagram of a partition $lambda = (lambda_1,ldots,lambda_k)$. For a square $(i,j) in lambda$, define the hook numbers $h_(i,j) = lambda_i + lambda_j' -i - j +1$ where $lambda'$ is the conjugate of $lambda$.



The hook-length formula shows, in particular, that if $lambdavdash n$ then
$$text$n!prod_square,in,lambdafrac1h_square$ qquad textis an integer.$$
Recall the Fibonacci numbers $F(0)=0, , F(1)=1$ with $F(n)=F(n-1)+F(n-2)$. Define $[0]!_F=1$ and $[n]!_F=F(1)cdot F(2)cdots F(n)$ for $ngeq1$.




QUESTION. Is it true that
$$text$[n]!_Fprod_square,in,lambdafrac1F(h_square)$ qquad textis an integer?$$








nt.number-theory co.combinatorics partitions algebraic-combinatorics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago







T. Amdeberhan

















asked 2 days ago









T. AmdeberhanT. Amdeberhan

18.1k229132




18.1k229132







  • 5




    $begingroup$
    More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
    $endgroup$
    – darij grinberg
    2 days ago







  • 1




    $begingroup$
    Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
    $endgroup$
    – Noam D. Elkies
    2 days ago







  • 9




    $begingroup$
    Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
    $endgroup$
    – Sam Hopkins
    2 days ago






  • 1




    $begingroup$
    @darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
    $endgroup$
    – Fedor Petrov
    yesterday






  • 5




    $begingroup$
    For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
    $endgroup$
    – J. M. is not a mathematician
    yesterday












  • 5




    $begingroup$
    More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
    $endgroup$
    – darij grinberg
    2 days ago







  • 1




    $begingroup$
    Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
    $endgroup$
    – Noam D. Elkies
    2 days ago







  • 9




    $begingroup$
    Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
    $endgroup$
    – Sam Hopkins
    2 days ago






  • 1




    $begingroup$
    @darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
    $endgroup$
    – Fedor Petrov
    yesterday






  • 5




    $begingroup$
    For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
    $endgroup$
    – J. M. is not a mathematician
    yesterday







5




5




$begingroup$
More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
$endgroup$
– darij grinberg
2 days ago





$begingroup$
More generally, this interesting question can be asked of any strong divisibility sequence instead of the Fibonacci sequence. But let's perhaps not abuse the notation $Fleft(nright)!$ for something that's not the factorial of $Fleft(nright)$.
$endgroup$
– darij grinberg
2 days ago





1




1




$begingroup$
Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
$endgroup$
– Noam D. Elkies
2 days ago





$begingroup$
Maybe call it $F!(n)$ instead of $F(n)!$. How far has this been checked?
$endgroup$
– Noam D. Elkies
2 days ago





9




9




$begingroup$
Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
$endgroup$
– Sam Hopkins
2 days ago




$begingroup$
Maybe this expression can be obtained by a clever substitution of the $q$-hook length formula?
$endgroup$
– Sam Hopkins
2 days ago




1




1




$begingroup$
@darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
$endgroup$
– Fedor Petrov
yesterday




$begingroup$
@darijgrinberg what is a strong divisibility sequence? Product of any $k$ consecutive guys is divisibly by the product of first $k$ guys?
$endgroup$
– Fedor Petrov
yesterday




5




5




$begingroup$
For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
$endgroup$
– J. M. is not a mathematician
yesterday




$begingroup$
For searching purposes: the product of consecutive Fibonacci numbers is sometimes referred to as a fibonorial.
$endgroup$
– J. M. is not a mathematician
yesterday










2 Answers
2






active

oldest

votes


















10












$begingroup$

Sam is correct of course about $q$-hook formula. Below is a short self-contained proof not relying on such advanced combinatorics.



Denote $h_1>ldots>h_k$ the set of hook lengths of the first column of diagram $lambda$. Then the multiset of hooks is $cup_i=1^k 1,2,ldots,h_isetminus h_i-h_j:i<j$ and $n=sum_i h_i-frack(k-1)2$.



Recall that $F(m)=P_m(alpha,beta)=prod_dPhi_d(alpha,beta)=prod_d (Phi_d(alpha,beta))^eta_d(m)$, where



$alpha,beta=(1pm sqrt5)/2$;



$P_n(x,y)=x^n-1+x^n-2y+ldots+y^n-1$;



$Phi_d$ are homogeneous cyclotomic polynomials;



$eta_d(m)=chi_mathbbZ(m/d)$ (i.e., it equals to 1 if $d$ divides $m$, and to 0 otherwise).



Therefore it suffices to prove that for any fixed $d>1$ we have
$$
sum_m=1^n eta_d(m)+sum_i<jeta_d(h_i-h_j)-sum_i=1^ksum_j=1^h_ieta_d(j)geqslant 0.quad (ast)
$$

$(ast)$ rewrites as
$$
[n/d]+|i<j:h_iequiv h_j pmod d|-sum_i=1^k [h_i/d]geqslant 0.quad (bullet)
$$

LHS of $(bullet)$ does not change if we reduce all $h_i$'s modulo $d$ (and accordingly change $n=sum_i h_i-frack(k-1)2$, of course), so we may suppose that $0leqslant h_ileqslant d-1$ for all $i$. For $a=0,1,dots, d-1$ denote $t_a=|i:h_i=a|$. Then $(bullet)$ rewrites as
$$
left[frac-binomsum_i=0^d-1 t_i2+sum_i=0^d-1 it_idright]+
sum_i=0^d-1 binomt_i2geqslant 0. quad (star)
$$



It remains to observe that LHS of $(star)$ equals to
$$
left[frac1dsum_i<jbinomt_i-t_j2 right].
$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Nice. So what does this integer count?
    $endgroup$
    – Brian Hopkins
    yesterday










  • $begingroup$
    Yes, that was my plan to ask next.
    $endgroup$
    – T. Amdeberhan
    yesterday











  • $begingroup$
    @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
    $endgroup$
    – T. Amdeberhan
    12 hours ago










  • $begingroup$
    @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
    $endgroup$
    – Fedor Petrov
    11 hours ago


















2












$begingroup$

This is a less elementary but maybe more conceptual proof, also giving some combinatorial meaning:
Use the formulas
$F(n) = fracvarphi^n -psi^nsqrt5$, $varphi =frac1+sqrt52, psi = frac1-sqrt52$. Let $q=fracpsivarphi = fracsqrt5-32$, so that
$F(n) = fracvarphi^nsqrt5 (1-q^n)$



Then the Fibonacci hook-length formula becomes:
DeclareMathOperatorlalambda



beginalign*
f^lambda_F:= frac[n]!_Fprod_uin lambdaF(h(u)) = frac varphi^ binomn+12 [n]!_q varphi^sum_u in lambda h(u) prod_u in lambda (1-q^h(u))
endalign*

So we have an ordinary $q$-analogue of the hook-length formula. Note that
$$sum_u in lambda h(u) = sum_i binomlambda_i2 + binomlambda'_j2 + |lambda| = b(lambda) +b(lambda') +n$$
Using the $q-$analogue hook-length formula via major index (EC2, Chapter 21) we have



beginalign*
f^lambda_F = varphi^ binomn2 -b(lambda)-b(lambda') q^-b(lambda) sum_Tin SYT(lambda) q^maj(T) = (-q)^frac12( -binomn2 +b(lambda') -b(lambda))sum_T q^maj(T)
endalign*



Now, it is clear from the q-HLF formula that $q^maj(T)$ is a symmetric polynomial, with lowest degree term $b(lambda)$ and maximal degree $b(lambda) + binomn+12 - n -b(lambda) -b(lambda') =binomn2 - b(lambda')$ so the median degree term is
$$M=frac12 left(b(lambda) +binomn2 - b(lambda')right)$$
which cancels with the factor of $q$ in $f^lambda_F$, so the resulting polynomial is of the form
beginalign*
f^lambda_F = (-1)^M sum_T: maj(T) leq M (q^M-maj(T) + q^maj(T)-M) \
= (-1)^M sum_T (-1)^M-maj(T)( varphi^2(M-maj(T)) + psi^2(M-maj(T)) =
sum_T (-1)^maj(T) L(2(M-maj(T)))
endalign*

where $L$ are the Lucas numbers.



**byproduct of collaborations with A. Morales and I. Pak.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326860%2fhook-length-formula-fibonaccized%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    Sam is correct of course about $q$-hook formula. Below is a short self-contained proof not relying on such advanced combinatorics.



    Denote $h_1>ldots>h_k$ the set of hook lengths of the first column of diagram $lambda$. Then the multiset of hooks is $cup_i=1^k 1,2,ldots,h_isetminus h_i-h_j:i<j$ and $n=sum_i h_i-frack(k-1)2$.



    Recall that $F(m)=P_m(alpha,beta)=prod_dPhi_d(alpha,beta)=prod_d (Phi_d(alpha,beta))^eta_d(m)$, where



    $alpha,beta=(1pm sqrt5)/2$;



    $P_n(x,y)=x^n-1+x^n-2y+ldots+y^n-1$;



    $Phi_d$ are homogeneous cyclotomic polynomials;



    $eta_d(m)=chi_mathbbZ(m/d)$ (i.e., it equals to 1 if $d$ divides $m$, and to 0 otherwise).



    Therefore it suffices to prove that for any fixed $d>1$ we have
    $$
    sum_m=1^n eta_d(m)+sum_i<jeta_d(h_i-h_j)-sum_i=1^ksum_j=1^h_ieta_d(j)geqslant 0.quad (ast)
    $$

    $(ast)$ rewrites as
    $$
    [n/d]+|i<j:h_iequiv h_j pmod d|-sum_i=1^k [h_i/d]geqslant 0.quad (bullet)
    $$

    LHS of $(bullet)$ does not change if we reduce all $h_i$'s modulo $d$ (and accordingly change $n=sum_i h_i-frack(k-1)2$, of course), so we may suppose that $0leqslant h_ileqslant d-1$ for all $i$. For $a=0,1,dots, d-1$ denote $t_a=|i:h_i=a|$. Then $(bullet)$ rewrites as
    $$
    left[frac-binomsum_i=0^d-1 t_i2+sum_i=0^d-1 it_idright]+
    sum_i=0^d-1 binomt_i2geqslant 0. quad (star)
    $$



    It remains to observe that LHS of $(star)$ equals to
    $$
    left[frac1dsum_i<jbinomt_i-t_j2 right].
    $$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Nice. So what does this integer count?
      $endgroup$
      – Brian Hopkins
      yesterday










    • $begingroup$
      Yes, that was my plan to ask next.
      $endgroup$
      – T. Amdeberhan
      yesterday











    • $begingroup$
      @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
      $endgroup$
      – T. Amdeberhan
      12 hours ago










    • $begingroup$
      @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
      $endgroup$
      – Fedor Petrov
      11 hours ago















    10












    $begingroup$

    Sam is correct of course about $q$-hook formula. Below is a short self-contained proof not relying on such advanced combinatorics.



    Denote $h_1>ldots>h_k$ the set of hook lengths of the first column of diagram $lambda$. Then the multiset of hooks is $cup_i=1^k 1,2,ldots,h_isetminus h_i-h_j:i<j$ and $n=sum_i h_i-frack(k-1)2$.



    Recall that $F(m)=P_m(alpha,beta)=prod_dPhi_d(alpha,beta)=prod_d (Phi_d(alpha,beta))^eta_d(m)$, where



    $alpha,beta=(1pm sqrt5)/2$;



    $P_n(x,y)=x^n-1+x^n-2y+ldots+y^n-1$;



    $Phi_d$ are homogeneous cyclotomic polynomials;



    $eta_d(m)=chi_mathbbZ(m/d)$ (i.e., it equals to 1 if $d$ divides $m$, and to 0 otherwise).



    Therefore it suffices to prove that for any fixed $d>1$ we have
    $$
    sum_m=1^n eta_d(m)+sum_i<jeta_d(h_i-h_j)-sum_i=1^ksum_j=1^h_ieta_d(j)geqslant 0.quad (ast)
    $$

    $(ast)$ rewrites as
    $$
    [n/d]+|i<j:h_iequiv h_j pmod d|-sum_i=1^k [h_i/d]geqslant 0.quad (bullet)
    $$

    LHS of $(bullet)$ does not change if we reduce all $h_i$'s modulo $d$ (and accordingly change $n=sum_i h_i-frack(k-1)2$, of course), so we may suppose that $0leqslant h_ileqslant d-1$ for all $i$. For $a=0,1,dots, d-1$ denote $t_a=|i:h_i=a|$. Then $(bullet)$ rewrites as
    $$
    left[frac-binomsum_i=0^d-1 t_i2+sum_i=0^d-1 it_idright]+
    sum_i=0^d-1 binomt_i2geqslant 0. quad (star)
    $$



    It remains to observe that LHS of $(star)$ equals to
    $$
    left[frac1dsum_i<jbinomt_i-t_j2 right].
    $$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Nice. So what does this integer count?
      $endgroup$
      – Brian Hopkins
      yesterday










    • $begingroup$
      Yes, that was my plan to ask next.
      $endgroup$
      – T. Amdeberhan
      yesterday











    • $begingroup$
      @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
      $endgroup$
      – T. Amdeberhan
      12 hours ago










    • $begingroup$
      @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
      $endgroup$
      – Fedor Petrov
      11 hours ago













    10












    10








    10





    $begingroup$

    Sam is correct of course about $q$-hook formula. Below is a short self-contained proof not relying on such advanced combinatorics.



    Denote $h_1>ldots>h_k$ the set of hook lengths of the first column of diagram $lambda$. Then the multiset of hooks is $cup_i=1^k 1,2,ldots,h_isetminus h_i-h_j:i<j$ and $n=sum_i h_i-frack(k-1)2$.



    Recall that $F(m)=P_m(alpha,beta)=prod_dPhi_d(alpha,beta)=prod_d (Phi_d(alpha,beta))^eta_d(m)$, where



    $alpha,beta=(1pm sqrt5)/2$;



    $P_n(x,y)=x^n-1+x^n-2y+ldots+y^n-1$;



    $Phi_d$ are homogeneous cyclotomic polynomials;



    $eta_d(m)=chi_mathbbZ(m/d)$ (i.e., it equals to 1 if $d$ divides $m$, and to 0 otherwise).



    Therefore it suffices to prove that for any fixed $d>1$ we have
    $$
    sum_m=1^n eta_d(m)+sum_i<jeta_d(h_i-h_j)-sum_i=1^ksum_j=1^h_ieta_d(j)geqslant 0.quad (ast)
    $$

    $(ast)$ rewrites as
    $$
    [n/d]+|i<j:h_iequiv h_j pmod d|-sum_i=1^k [h_i/d]geqslant 0.quad (bullet)
    $$

    LHS of $(bullet)$ does not change if we reduce all $h_i$'s modulo $d$ (and accordingly change $n=sum_i h_i-frack(k-1)2$, of course), so we may suppose that $0leqslant h_ileqslant d-1$ for all $i$. For $a=0,1,dots, d-1$ denote $t_a=|i:h_i=a|$. Then $(bullet)$ rewrites as
    $$
    left[frac-binomsum_i=0^d-1 t_i2+sum_i=0^d-1 it_idright]+
    sum_i=0^d-1 binomt_i2geqslant 0. quad (star)
    $$



    It remains to observe that LHS of $(star)$ equals to
    $$
    left[frac1dsum_i<jbinomt_i-t_j2 right].
    $$






    share|cite|improve this answer











    $endgroup$



    Sam is correct of course about $q$-hook formula. Below is a short self-contained proof not relying on such advanced combinatorics.



    Denote $h_1>ldots>h_k$ the set of hook lengths of the first column of diagram $lambda$. Then the multiset of hooks is $cup_i=1^k 1,2,ldots,h_isetminus h_i-h_j:i<j$ and $n=sum_i h_i-frack(k-1)2$.



    Recall that $F(m)=P_m(alpha,beta)=prod_dPhi_d(alpha,beta)=prod_d (Phi_d(alpha,beta))^eta_d(m)$, where



    $alpha,beta=(1pm sqrt5)/2$;



    $P_n(x,y)=x^n-1+x^n-2y+ldots+y^n-1$;



    $Phi_d$ are homogeneous cyclotomic polynomials;



    $eta_d(m)=chi_mathbbZ(m/d)$ (i.e., it equals to 1 if $d$ divides $m$, and to 0 otherwise).



    Therefore it suffices to prove that for any fixed $d>1$ we have
    $$
    sum_m=1^n eta_d(m)+sum_i<jeta_d(h_i-h_j)-sum_i=1^ksum_j=1^h_ieta_d(j)geqslant 0.quad (ast)
    $$

    $(ast)$ rewrites as
    $$
    [n/d]+|i<j:h_iequiv h_j pmod d|-sum_i=1^k [h_i/d]geqslant 0.quad (bullet)
    $$

    LHS of $(bullet)$ does not change if we reduce all $h_i$'s modulo $d$ (and accordingly change $n=sum_i h_i-frack(k-1)2$, of course), so we may suppose that $0leqslant h_ileqslant d-1$ for all $i$. For $a=0,1,dots, d-1$ denote $t_a=|i:h_i=a|$. Then $(bullet)$ rewrites as
    $$
    left[frac-binomsum_i=0^d-1 t_i2+sum_i=0^d-1 it_idright]+
    sum_i=0^d-1 binomt_i2geqslant 0. quad (star)
    $$



    It remains to observe that LHS of $(star)$ equals to
    $$
    left[frac1dsum_i<jbinomt_i-t_j2 right].
    $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 11 hours ago

























    answered yesterday









    Fedor PetrovFedor Petrov

    51.5k6120237




    51.5k6120237











    • $begingroup$
      Nice. So what does this integer count?
      $endgroup$
      – Brian Hopkins
      yesterday










    • $begingroup$
      Yes, that was my plan to ask next.
      $endgroup$
      – T. Amdeberhan
      yesterday











    • $begingroup$
      @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
      $endgroup$
      – T. Amdeberhan
      12 hours ago










    • $begingroup$
      @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
      $endgroup$
      – Fedor Petrov
      11 hours ago
















    • $begingroup$
      Nice. So what does this integer count?
      $endgroup$
      – Brian Hopkins
      yesterday










    • $begingroup$
      Yes, that was my plan to ask next.
      $endgroup$
      – T. Amdeberhan
      yesterday











    • $begingroup$
      @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
      $endgroup$
      – T. Amdeberhan
      12 hours ago










    • $begingroup$
      @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
      $endgroup$
      – Fedor Petrov
      11 hours ago















    $begingroup$
    Nice. So what does this integer count?
    $endgroup$
    – Brian Hopkins
    yesterday




    $begingroup$
    Nice. So what does this integer count?
    $endgroup$
    – Brian Hopkins
    yesterday












    $begingroup$
    Yes, that was my plan to ask next.
    $endgroup$
    – T. Amdeberhan
    yesterday





    $begingroup$
    Yes, that was my plan to ask next.
    $endgroup$
    – T. Amdeberhan
    yesterday













    $begingroup$
    @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
    $endgroup$
    – T. Amdeberhan
    12 hours ago




    $begingroup$
    @Fedor: what are $alpha$ and $beta$? What's the connection between $P_m$ and $eta_d$, etc?
    $endgroup$
    – T. Amdeberhan
    12 hours ago












    $begingroup$
    @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
    $endgroup$
    – Fedor Petrov
    11 hours ago




    $begingroup$
    @T.Amdeberhan sorry, forgot to copy the notations from my previous Fibonacci answer. Hope now it is clear.
    $endgroup$
    – Fedor Petrov
    11 hours ago











    2












    $begingroup$

    This is a less elementary but maybe more conceptual proof, also giving some combinatorial meaning:
    Use the formulas
    $F(n) = fracvarphi^n -psi^nsqrt5$, $varphi =frac1+sqrt52, psi = frac1-sqrt52$. Let $q=fracpsivarphi = fracsqrt5-32$, so that
    $F(n) = fracvarphi^nsqrt5 (1-q^n)$



    Then the Fibonacci hook-length formula becomes:
    DeclareMathOperatorlalambda



    beginalign*
    f^lambda_F:= frac[n]!_Fprod_uin lambdaF(h(u)) = frac varphi^ binomn+12 [n]!_q varphi^sum_u in lambda h(u) prod_u in lambda (1-q^h(u))
    endalign*

    So we have an ordinary $q$-analogue of the hook-length formula. Note that
    $$sum_u in lambda h(u) = sum_i binomlambda_i2 + binomlambda'_j2 + |lambda| = b(lambda) +b(lambda') +n$$
    Using the $q-$analogue hook-length formula via major index (EC2, Chapter 21) we have



    beginalign*
    f^lambda_F = varphi^ binomn2 -b(lambda)-b(lambda') q^-b(lambda) sum_Tin SYT(lambda) q^maj(T) = (-q)^frac12( -binomn2 +b(lambda') -b(lambda))sum_T q^maj(T)
    endalign*



    Now, it is clear from the q-HLF formula that $q^maj(T)$ is a symmetric polynomial, with lowest degree term $b(lambda)$ and maximal degree $b(lambda) + binomn+12 - n -b(lambda) -b(lambda') =binomn2 - b(lambda')$ so the median degree term is
    $$M=frac12 left(b(lambda) +binomn2 - b(lambda')right)$$
    which cancels with the factor of $q$ in $f^lambda_F$, so the resulting polynomial is of the form
    beginalign*
    f^lambda_F = (-1)^M sum_T: maj(T) leq M (q^M-maj(T) + q^maj(T)-M) \
    = (-1)^M sum_T (-1)^M-maj(T)( varphi^2(M-maj(T)) + psi^2(M-maj(T)) =
    sum_T (-1)^maj(T) L(2(M-maj(T)))
    endalign*

    where $L$ are the Lucas numbers.



    **byproduct of collaborations with A. Morales and I. Pak.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      This is a less elementary but maybe more conceptual proof, also giving some combinatorial meaning:
      Use the formulas
      $F(n) = fracvarphi^n -psi^nsqrt5$, $varphi =frac1+sqrt52, psi = frac1-sqrt52$. Let $q=fracpsivarphi = fracsqrt5-32$, so that
      $F(n) = fracvarphi^nsqrt5 (1-q^n)$



      Then the Fibonacci hook-length formula becomes:
      DeclareMathOperatorlalambda



      beginalign*
      f^lambda_F:= frac[n]!_Fprod_uin lambdaF(h(u)) = frac varphi^ binomn+12 [n]!_q varphi^sum_u in lambda h(u) prod_u in lambda (1-q^h(u))
      endalign*

      So we have an ordinary $q$-analogue of the hook-length formula. Note that
      $$sum_u in lambda h(u) = sum_i binomlambda_i2 + binomlambda'_j2 + |lambda| = b(lambda) +b(lambda') +n$$
      Using the $q-$analogue hook-length formula via major index (EC2, Chapter 21) we have



      beginalign*
      f^lambda_F = varphi^ binomn2 -b(lambda)-b(lambda') q^-b(lambda) sum_Tin SYT(lambda) q^maj(T) = (-q)^frac12( -binomn2 +b(lambda') -b(lambda))sum_T q^maj(T)
      endalign*



      Now, it is clear from the q-HLF formula that $q^maj(T)$ is a symmetric polynomial, with lowest degree term $b(lambda)$ and maximal degree $b(lambda) + binomn+12 - n -b(lambda) -b(lambda') =binomn2 - b(lambda')$ so the median degree term is
      $$M=frac12 left(b(lambda) +binomn2 - b(lambda')right)$$
      which cancels with the factor of $q$ in $f^lambda_F$, so the resulting polynomial is of the form
      beginalign*
      f^lambda_F = (-1)^M sum_T: maj(T) leq M (q^M-maj(T) + q^maj(T)-M) \
      = (-1)^M sum_T (-1)^M-maj(T)( varphi^2(M-maj(T)) + psi^2(M-maj(T)) =
      sum_T (-1)^maj(T) L(2(M-maj(T)))
      endalign*

      where $L$ are the Lucas numbers.



      **byproduct of collaborations with A. Morales and I. Pak.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        This is a less elementary but maybe more conceptual proof, also giving some combinatorial meaning:
        Use the formulas
        $F(n) = fracvarphi^n -psi^nsqrt5$, $varphi =frac1+sqrt52, psi = frac1-sqrt52$. Let $q=fracpsivarphi = fracsqrt5-32$, so that
        $F(n) = fracvarphi^nsqrt5 (1-q^n)$



        Then the Fibonacci hook-length formula becomes:
        DeclareMathOperatorlalambda



        beginalign*
        f^lambda_F:= frac[n]!_Fprod_uin lambdaF(h(u)) = frac varphi^ binomn+12 [n]!_q varphi^sum_u in lambda h(u) prod_u in lambda (1-q^h(u))
        endalign*

        So we have an ordinary $q$-analogue of the hook-length formula. Note that
        $$sum_u in lambda h(u) = sum_i binomlambda_i2 + binomlambda'_j2 + |lambda| = b(lambda) +b(lambda') +n$$
        Using the $q-$analogue hook-length formula via major index (EC2, Chapter 21) we have



        beginalign*
        f^lambda_F = varphi^ binomn2 -b(lambda)-b(lambda') q^-b(lambda) sum_Tin SYT(lambda) q^maj(T) = (-q)^frac12( -binomn2 +b(lambda') -b(lambda))sum_T q^maj(T)
        endalign*



        Now, it is clear from the q-HLF formula that $q^maj(T)$ is a symmetric polynomial, with lowest degree term $b(lambda)$ and maximal degree $b(lambda) + binomn+12 - n -b(lambda) -b(lambda') =binomn2 - b(lambda')$ so the median degree term is
        $$M=frac12 left(b(lambda) +binomn2 - b(lambda')right)$$
        which cancels with the factor of $q$ in $f^lambda_F$, so the resulting polynomial is of the form
        beginalign*
        f^lambda_F = (-1)^M sum_T: maj(T) leq M (q^M-maj(T) + q^maj(T)-M) \
        = (-1)^M sum_T (-1)^M-maj(T)( varphi^2(M-maj(T)) + psi^2(M-maj(T)) =
        sum_T (-1)^maj(T) L(2(M-maj(T)))
        endalign*

        where $L$ are the Lucas numbers.



        **byproduct of collaborations with A. Morales and I. Pak.






        share|cite|improve this answer









        $endgroup$



        This is a less elementary but maybe more conceptual proof, also giving some combinatorial meaning:
        Use the formulas
        $F(n) = fracvarphi^n -psi^nsqrt5$, $varphi =frac1+sqrt52, psi = frac1-sqrt52$. Let $q=fracpsivarphi = fracsqrt5-32$, so that
        $F(n) = fracvarphi^nsqrt5 (1-q^n)$



        Then the Fibonacci hook-length formula becomes:
        DeclareMathOperatorlalambda



        beginalign*
        f^lambda_F:= frac[n]!_Fprod_uin lambdaF(h(u)) = frac varphi^ binomn+12 [n]!_q varphi^sum_u in lambda h(u) prod_u in lambda (1-q^h(u))
        endalign*

        So we have an ordinary $q$-analogue of the hook-length formula. Note that
        $$sum_u in lambda h(u) = sum_i binomlambda_i2 + binomlambda'_j2 + |lambda| = b(lambda) +b(lambda') +n$$
        Using the $q-$analogue hook-length formula via major index (EC2, Chapter 21) we have



        beginalign*
        f^lambda_F = varphi^ binomn2 -b(lambda)-b(lambda') q^-b(lambda) sum_Tin SYT(lambda) q^maj(T) = (-q)^frac12( -binomn2 +b(lambda') -b(lambda))sum_T q^maj(T)
        endalign*



        Now, it is clear from the q-HLF formula that $q^maj(T)$ is a symmetric polynomial, with lowest degree term $b(lambda)$ and maximal degree $b(lambda) + binomn+12 - n -b(lambda) -b(lambda') =binomn2 - b(lambda')$ so the median degree term is
        $$M=frac12 left(b(lambda) +binomn2 - b(lambda')right)$$
        which cancels with the factor of $q$ in $f^lambda_F$, so the resulting polynomial is of the form
        beginalign*
        f^lambda_F = (-1)^M sum_T: maj(T) leq M (q^M-maj(T) + q^maj(T)-M) \
        = (-1)^M sum_T (-1)^M-maj(T)( varphi^2(M-maj(T)) + psi^2(M-maj(T)) =
        sum_T (-1)^maj(T) L(2(M-maj(T)))
        endalign*

        where $L$ are the Lucas numbers.



        **byproduct of collaborations with A. Morales and I. Pak.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 41 mins ago









        Greta PanovaGreta Panova

        15613




        15613



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326860%2fhook-length-formula-fibonaccized%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            xMSUezm 8VwPMyO0 LxVaL,XF98 J AhGIa Mq ZCs4w3v 0ocgBzKzkszS6p,vy FWlcY6OFK
            lYhyKlX9nZm,jRLtFAz23,o

            Popular posts from this blog

            RemoteApp sporadic failureWindows 2008 RemoteAPP client disconnects within a matter of minutesWhat is the minimum version of RDP supported by Server 2012 RDS?How to configure a Remoteapp server to increase stabilityMicrosoft RemoteApp Active SessionRDWeb TS connection broken for some users post RemoteApp certificate changeRemote Desktop Licensing, RemoteAPPRDS 2012 R2 some users are not able to logon after changed date and time on Connection BrokersWhat happens during Remote Desktop logon, and is there any logging?After installing RDS on WinServer 2016 I still can only connect with two users?RD Connection via RDGW to Session host is not connecting

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020