$ limlimits_xrightarrow +infty left(frac2pi arctan x right)^x$ and $lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)$?Compute $lim limits_xtoinfty (fracx-2x+2)^x$L'Hopital's Rule with $lim limits_x to inftyfrac2^xe^left(x^2right)$How to evaluate $lim_xtoinftyarctan (4/x)/ |arcsin (-3/x)|$?Evaluate $limlimits_xtoinftyx(fracpi2-arctan(x))$ without using L'HôpitalCalculate this limit : $lim_xrightarrow +inftyleft[xleft(4arctanleft(fracx+1xright)-piright)right]$Prove that $limlimits_nrightarrowinfty left(1+frac1a_n right)^a_n=e$ if $limlimits_nrightarrowinfty a_n=infty$Calculate the limit: $lim limits_n rightarrow infty frac 4(n+3)!-n!n((n+2)!-(n-1)!)$How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$How would you calculate this limit? $limlimits_n rightarrowinftyfracpi2nsumlimits_k=1^ncosleft(fracpi2nkright)$Why am I computing $lim limits_x to infty x left(arctan fracx+1x+2 -arctan fracxx+2 right)$ wrong?
Is it possible to create a QR code using text?
How do conventional missiles fly?
How badly should I try to prevent a user from XSSing themselves?
Processor speed limited at 0.4 Ghz
What is the fastest integer factorization to break RSA?
One verb to replace 'be a member of' a club
How to prevent "they're falling in love" trope
How to compactly explain secondary and tertiary characters without resorting to stereotypes?
What exactly is ineptocracy?
My ex-girlfriend uses my Apple ID to log in to her iPad. Do I have to give her my Apple ID password to reset it?
Car headlights in a world without electricity
Placement of More Information/Help Icon button for Radio Buttons
OP Amp not amplifying audio signal
Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?
Finding the reason behind the value of the integral.
Rotate ASCII Art by 45 Degrees
How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?
files created then deleted at every second in tmp directory
In Bayesian inference, why are some terms dropped from the posterior predictive?
Finitely generated matrix groups whose eigenvalues are all algebraic
How obscure is the use of 令 in 令和?
How do I exit BASH while loop using modulus operator?
Was the old ablative pronoun "med" or "mēd"?
Can compressed videos be decoded back to their uncompresed original format?
$ limlimits_xrightarrow +infty left(frac2pi arctan x right)^x$ and $lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)$?
Compute $lim limits_xtoinfty (fracx-2x+2)^x$L'Hopital's Rule with $lim limits_x to inftyfrac2^xe^left(x^2right)$How to evaluate $lim_xtoinftyarctan (4/x)/ |arcsin (-3/x)|$?Evaluate $limlimits_xtoinftyx(fracpi2-arctan(x))$ without using L'HôpitalCalculate this limit : $lim_xrightarrow +inftyleft[xleft(4arctanleft(fracx+1xright)-piright)right]$Prove that $limlimits_nrightarrowinfty left(1+frac1a_n right)^a_n=e$ if $limlimits_nrightarrowinfty a_n=infty$Calculate the limit: $lim limits_n rightarrow infty frac 4(n+3)!-n!n((n+2)!-(n-1)!)$How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$How would you calculate this limit? $limlimits_n rightarrowinftyfracpi2nsumlimits_k=1^ncosleft(fracpi2nkright)$Why am I computing $lim limits_x to infty x left(arctan fracx+1x+2 -arctan fracxx+2 right)$ wrong?
$begingroup$
I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$
For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.
For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?
calculus limits
$endgroup$
add a comment |
$begingroup$
I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$
For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.
For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?
calculus limits
$endgroup$
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
yesterday
2
$begingroup$
Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
$endgroup$
– Asaf Karagila♦
yesterday
add a comment |
$begingroup$
I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$
For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.
For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?
calculus limits
$endgroup$
I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$
For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.
For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?
calculus limits
calculus limits
edited yesterday
user21820
39.9k544159
39.9k544159
asked yesterday
lanse7ptylanse7pty
1,8461823
1,8461823
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
yesterday
2
$begingroup$
Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
$endgroup$
– Asaf Karagila♦
yesterday
add a comment |
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
yesterday
2
$begingroup$
Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
$endgroup$
– Asaf Karagila♦
yesterday
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
yesterday
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
yesterday
2
2
$begingroup$
Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
$endgroup$
– Asaf Karagila♦
yesterday
$begingroup$
Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
$endgroup$
– Asaf Karagila♦
yesterday
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
You can solve the first one using
- $arctan x + operatornamearccotx = fracpi2$
- $lim_yto 0(1-y)^1/y = e^-1$
- $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$
begineqnarray* left(frac2pi arctan x right)^x
& stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
& stackrelx to +inftylongrightarrow & e^-frac2pi
endeqnarray*
The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider
$fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.
$endgroup$
add a comment |
$begingroup$
Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$
$endgroup$
add a comment |
$begingroup$
Without L'Hospital
$$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$
Now, by Taylor for large values of $x$
$$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
$$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
$$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
$$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached
$endgroup$
add a comment |
$begingroup$
For the first: taking $log$ and doing the cov $x = 1/t$ and using L'Hôpital:
$$
lim_xto+inftyxlogleft(frac2piarctan x right) =
lim_tto 0^+frac 1tlogleft(frac2piarctan(1/t)right) =
lim_tto 0^+frac -1(t^2 + 1)arctan(1/t)) = -frac 2pi.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2flim-limits-x-rightarrow-infty-left-frac2-pi-arctan-x-rightx-an%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can solve the first one using
- $arctan x + operatornamearccotx = fracpi2$
- $lim_yto 0(1-y)^1/y = e^-1$
- $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$
begineqnarray* left(frac2pi arctan x right)^x
& stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
& stackrelx to +inftylongrightarrow & e^-frac2pi
endeqnarray*
The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider
$fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.
$endgroup$
add a comment |
$begingroup$
You can solve the first one using
- $arctan x + operatornamearccotx = fracpi2$
- $lim_yto 0(1-y)^1/y = e^-1$
- $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$
begineqnarray* left(frac2pi arctan x right)^x
& stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
& stackrelx to +inftylongrightarrow & e^-frac2pi
endeqnarray*
The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider
$fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.
$endgroup$
add a comment |
$begingroup$
You can solve the first one using
- $arctan x + operatornamearccotx = fracpi2$
- $lim_yto 0(1-y)^1/y = e^-1$
- $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$
begineqnarray* left(frac2pi arctan x right)^x
& stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
& stackrelx to +inftylongrightarrow & e^-frac2pi
endeqnarray*
The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider
$fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.
$endgroup$
You can solve the first one using
- $arctan x + operatornamearccotx = fracpi2$
- $lim_yto 0(1-y)^1/y = e^-1$
- $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$
begineqnarray* left(frac2pi arctan x right)^x
& stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
& stackrelx to +inftylongrightarrow & e^-frac2pi
endeqnarray*
The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider
$fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.
answered yesterday
trancelocationtrancelocation
13.5k1827
13.5k1827
add a comment |
add a comment |
$begingroup$
Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$
$endgroup$
add a comment |
$begingroup$
Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$
$endgroup$
add a comment |
$begingroup$
Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$
$endgroup$
Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$
edited yesterday
answered yesterday
Paras KhoslaParas Khosla
2,765423
2,765423
add a comment |
add a comment |
$begingroup$
Without L'Hospital
$$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$
Now, by Taylor for large values of $x$
$$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
$$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
$$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
$$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached
$endgroup$
add a comment |
$begingroup$
Without L'Hospital
$$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$
Now, by Taylor for large values of $x$
$$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
$$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
$$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
$$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached
$endgroup$
add a comment |
$begingroup$
Without L'Hospital
$$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$
Now, by Taylor for large values of $x$
$$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
$$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
$$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
$$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached
$endgroup$
Without L'Hospital
$$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$
Now, by Taylor for large values of $x$
$$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
$$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
$$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
$$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached
answered yesterday
Claude LeiboviciClaude Leibovici
125k1158136
125k1158136
add a comment |
add a comment |
$begingroup$
For the first: taking $log$ and doing the cov $x = 1/t$ and using L'Hôpital:
$$
lim_xto+inftyxlogleft(frac2piarctan x right) =
lim_tto 0^+frac 1tlogleft(frac2piarctan(1/t)right) =
lim_tto 0^+frac -1(t^2 + 1)arctan(1/t)) = -frac 2pi.
$$
$endgroup$
add a comment |
$begingroup$
For the first: taking $log$ and doing the cov $x = 1/t$ and using L'Hôpital:
$$
lim_xto+inftyxlogleft(frac2piarctan x right) =
lim_tto 0^+frac 1tlogleft(frac2piarctan(1/t)right) =
lim_tto 0^+frac -1(t^2 + 1)arctan(1/t)) = -frac 2pi.
$$
$endgroup$
add a comment |
$begingroup$
For the first: taking $log$ and doing the cov $x = 1/t$ and using L'Hôpital:
$$
lim_xto+inftyxlogleft(frac2piarctan x right) =
lim_tto 0^+frac 1tlogleft(frac2piarctan(1/t)right) =
lim_tto 0^+frac -1(t^2 + 1)arctan(1/t)) = -frac 2pi.
$$
$endgroup$
For the first: taking $log$ and doing the cov $x = 1/t$ and using L'Hôpital:
$$
lim_xto+inftyxlogleft(frac2piarctan x right) =
lim_tto 0^+frac 1tlogleft(frac2piarctan(1/t)right) =
lim_tto 0^+frac -1(t^2 + 1)arctan(1/t)) = -frac 2pi.
$$
answered yesterday
Martín-Blas Pérez PinillaMartín-Blas Pérez Pinilla
35k42971
35k42971
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2flim-limits-x-rightarrow-infty-left-frac2-pi-arctan-x-rightx-an%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
yesterday
2
$begingroup$
Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
$endgroup$
– Asaf Karagila♦
yesterday