$ limlimits_xrightarrow +infty left(frac2pi arctan x right)^x$ and $lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)$?Compute $lim limits_xtoinfty (fracx-2x+2)^x$L'Hopital's Rule with $lim limits_x to inftyfrac2^xe^left(x^2right)$How to evaluate $lim_xtoinftyarctan (4/x)/ |arcsin (-3/x)|$?Evaluate $limlimits_xtoinftyx(fracpi2-arctan(x))$ without using L'HôpitalCalculate this limit : $lim_xrightarrow +inftyleft[xleft(4arctanleft(fracx+1xright)-piright)right]$Prove that $limlimits_nrightarrowinfty left(1+frac1a_n right)^a_n=e$ if $limlimits_nrightarrowinfty a_n=infty$Calculate the limit: $lim limits_n rightarrow infty frac 4(n+3)!-n!n((n+2)!-(n-1)!)$How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$How would you calculate this limit? $limlimits_n rightarrowinftyfracpi2nsumlimits_k=1^ncosleft(fracpi2nkright)$Why am I computing $lim limits_x to infty x left(arctan fracx+1x+2 -arctan fracxx+2 right)$ wrong?

Is it possible to create a QR code using text?

How do conventional missiles fly?

How badly should I try to prevent a user from XSSing themselves?

Processor speed limited at 0.4 Ghz

What is the fastest integer factorization to break RSA?

One verb to replace 'be a member of' a club

How to prevent "they're falling in love" trope

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

What exactly is ineptocracy?

My ex-girlfriend uses my Apple ID to log in to her iPad. Do I have to give her my Apple ID password to reset it?

Car headlights in a world without electricity

Placement of More Information/Help Icon button for Radio Buttons

OP Amp not amplifying audio signal

Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?

Finding the reason behind the value of the integral.

Rotate ASCII Art by 45 Degrees

How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?

files created then deleted at every second in tmp directory

In Bayesian inference, why are some terms dropped from the posterior predictive?

Finitely generated matrix groups whose eigenvalues are all algebraic

How obscure is the use of 令 in 令和?

How do I exit BASH while loop using modulus operator?

Was the old ablative pronoun "med" or "mēd"?

Can compressed videos be decoded back to their uncompresed original format?



$ limlimits_xrightarrow +infty left(frac2pi arctan x right)^x$ and $lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)$?


Compute $lim limits_xtoinfty (fracx-2x+2)^x$L'Hopital's Rule with $lim limits_x to inftyfrac2^xe^left(x^2right)$How to evaluate $lim_xtoinftyarctan (4/x)/ |arcsin (-3/x)|$?Evaluate $limlimits_xtoinftyx(fracpi2-arctan(x))$ without using L'HôpitalCalculate this limit : $lim_xrightarrow +inftyleft[xleft(4arctanleft(fracx+1xright)-piright)right]$Prove that $limlimits_nrightarrowinfty left(1+frac1a_n right)^a_n=e$ if $limlimits_nrightarrowinfty a_n=infty$Calculate the limit: $lim limits_n rightarrow infty frac 4(n+3)!-n!n((n+2)!-(n-1)!)$How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$How would you calculate this limit? $limlimits_n rightarrowinftyfracpi2nsumlimits_k=1^ncosleft(fracpi2nkright)$Why am I computing $lim limits_x to infty x left(arctan fracx+1x+2 -arctan fracxx+2 right)$ wrong?













2












$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
    $endgroup$
    – Asaf Karagila
    yesterday















2












$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
    $endgroup$
    – Asaf Karagila
    yesterday













2












2








2





$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$





I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?







calculus limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









user21820

39.9k544159




39.9k544159










asked yesterday









lanse7ptylanse7pty

1,8461823




1,8461823











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
    $endgroup$
    – Asaf Karagila
    yesterday
















  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    yesterday






  • 2




    $begingroup$
    Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
    $endgroup$
    – Asaf Karagila
    yesterday















$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
yesterday




$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
yesterday




2




2




$begingroup$
Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
$endgroup$
– Asaf Karagila
yesterday




$begingroup$
Try to avoid asking several questions in a single post. If you feel that the answer would be similar, ask about the first limit, and then try to solve the second one by yourself, and if you are still stuck, ask a separate question. The software has a limit on how many questions you can ask in a single day, and doing it like this is circumventing these limitations.
$endgroup$
– Asaf Karagila
yesterday










4 Answers
4






active

oldest

votes


















1












$begingroup$

You can solve the first one using



  • $arctan x + operatornamearccotx = fracpi2$

  • $lim_yto 0(1-y)^1/y = e^-1$

  • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

begineqnarray* left(frac2pi arctan x right)^x
& stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
& stackrelx to +inftylongrightarrow & e^-frac2pi
endeqnarray*



The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




  • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






    share|cite|improve this answer











    $endgroup$




















      1












      $begingroup$

      Without L'Hospital
      $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



      Now, by Taylor for large values of $x$
      $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
      $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
      $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
      $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        For the first: taking $log$ and doing the cov $x = 1/t$ and using L'Hôpital:
        $$
        lim_xto+inftyxlogleft(frac2piarctan x right) =
        lim_tto 0^+frac 1tlogleft(frac2piarctan(1/t)right) =
        lim_tto 0^+frac -1(t^2 + 1)arctan(1/t)) = -frac 2pi.
        $$






        share|cite|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2flim-limits-x-rightarrow-infty-left-frac2-pi-arctan-x-rightx-an%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          You can solve the first one using



          • $arctan x + operatornamearccotx = fracpi2$

          • $lim_yto 0(1-y)^1/y = e^-1$

          • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

          begineqnarray* left(frac2pi arctan x right)^x
          & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
          & stackrelx to +inftylongrightarrow & e^-frac2pi
          endeqnarray*



          The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




          • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





          share|cite|improve this answer









          $endgroup$

















            1












            $begingroup$

            You can solve the first one using



            • $arctan x + operatornamearccotx = fracpi2$

            • $lim_yto 0(1-y)^1/y = e^-1$

            • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

            begineqnarray* left(frac2pi arctan x right)^x
            & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
            & stackrelx to +inftylongrightarrow & e^-frac2pi
            endeqnarray*



            The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




            • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





            share|cite|improve this answer









            $endgroup$















              1












              1








              1





              $begingroup$

              You can solve the first one using



              • $arctan x + operatornamearccotx = fracpi2$

              • $lim_yto 0(1-y)^1/y = e^-1$

              • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

              begineqnarray* left(frac2pi arctan x right)^x
              & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
              & stackrelx to +inftylongrightarrow & e^-frac2pi
              endeqnarray*



              The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




              • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





              share|cite|improve this answer









              $endgroup$



              You can solve the first one using



              • $arctan x + operatornamearccotx = fracpi2$

              • $lim_yto 0(1-y)^1/y = e^-1$

              • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

              begineqnarray* left(frac2pi arctan x right)^x
              & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
              & stackrelx to +inftylongrightarrow & e^-frac2pi
              endeqnarray*



              The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




              • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.






              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered yesterday









              trancelocationtrancelocation

              13.5k1827




              13.5k1827





















                  2












                  $begingroup$

                  Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






                  share|cite|improve this answer











                  $endgroup$

















                    2












                    $begingroup$

                    Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






                    share|cite|improve this answer











                    $endgroup$















                      2












                      2








                      2





                      $begingroup$

                      Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






                      share|cite|improve this answer











                      $endgroup$



                      Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited yesterday

























                      answered yesterday









                      Paras KhoslaParas Khosla

                      2,765423




                      2,765423





















                          1












                          $begingroup$

                          Without L'Hospital
                          $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                          Now, by Taylor for large values of $x$
                          $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                          $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                          $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                          $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                          share|cite|improve this answer









                          $endgroup$

















                            1












                            $begingroup$

                            Without L'Hospital
                            $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                            Now, by Taylor for large values of $x$
                            $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                            $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                            $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                            $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                            share|cite|improve this answer









                            $endgroup$















                              1












                              1








                              1





                              $begingroup$

                              Without L'Hospital
                              $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                              Now, by Taylor for large values of $x$
                              $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                              $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                              $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                              $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                              share|cite|improve this answer









                              $endgroup$



                              Without L'Hospital
                              $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                              Now, by Taylor for large values of $x$
                              $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                              $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                              $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                              $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered yesterday









                              Claude LeiboviciClaude Leibovici

                              125k1158136




                              125k1158136





















                                  0












                                  $begingroup$

                                  For the first: taking $log$ and doing the cov $x = 1/t$ and using L'Hôpital:
                                  $$
                                  lim_xto+inftyxlogleft(frac2piarctan x right) =
                                  lim_tto 0^+frac 1tlogleft(frac2piarctan(1/t)right) =
                                  lim_tto 0^+frac -1(t^2 + 1)arctan(1/t)) = -frac 2pi.
                                  $$






                                  share|cite|improve this answer









                                  $endgroup$

















                                    0












                                    $begingroup$

                                    For the first: taking $log$ and doing the cov $x = 1/t$ and using L'Hôpital:
                                    $$
                                    lim_xto+inftyxlogleft(frac2piarctan x right) =
                                    lim_tto 0^+frac 1tlogleft(frac2piarctan(1/t)right) =
                                    lim_tto 0^+frac -1(t^2 + 1)arctan(1/t)) = -frac 2pi.
                                    $$






                                    share|cite|improve this answer









                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      For the first: taking $log$ and doing the cov $x = 1/t$ and using L'Hôpital:
                                      $$
                                      lim_xto+inftyxlogleft(frac2piarctan x right) =
                                      lim_tto 0^+frac 1tlogleft(frac2piarctan(1/t)right) =
                                      lim_tto 0^+frac -1(t^2 + 1)arctan(1/t)) = -frac 2pi.
                                      $$






                                      share|cite|improve this answer









                                      $endgroup$



                                      For the first: taking $log$ and doing the cov $x = 1/t$ and using L'Hôpital:
                                      $$
                                      lim_xto+inftyxlogleft(frac2piarctan x right) =
                                      lim_tto 0^+frac 1tlogleft(frac2piarctan(1/t)right) =
                                      lim_tto 0^+frac -1(t^2 + 1)arctan(1/t)) = -frac 2pi.
                                      $$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered yesterday









                                      Martín-Blas Pérez PinillaMartín-Blas Pérez Pinilla

                                      35k42971




                                      35k42971



























                                          draft saved

                                          draft discarded
















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid


                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.

                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2flim-limits-x-rightarrow-infty-left-frac2-pi-arctan-x-rightx-an%23new-answer', 'question_page');

                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                                          Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                                          Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020