Is there a function to partition an integer set?Partition a set into subsets of size $k$Partition a set into $k$ non-empty subsetsHow to delete mirror symmetric point pair efficientlyPartition a range of integers into triplesSelecting last partition in integer partitionHow to partition a 2-D array properly?generating integer partitionsImproved a code to work once (no need to repeat)Partition a set of n objects into k subsets?Groupings of the Elements of a List with at Most $k$ Elements

Sums of two squares in arithmetic progressions

How does a dynamic QR code work?

How could indestructible materials be used in power generation?

Can a virus destroy the BIOS of a modern computer?

Does the Idaho Potato Commission associate potato skins with healthy eating?

Venezuelan girlfriend wants to travel the USA to be with me. What is the process?

Getting extremely large arrows with tikzcd

Finitely generated matrix groups whose eigenvalues are all algebraic

My ex-girlfriend uses my Apple ID to log in to her iPad. Do I have to give her my Apple ID password to reset it?

How to stretch the corners of this image so that it looks like a perfect rectangle?

Do Iron Man suits sport waste management systems?

Should I tell management that I intend to leave due to bad software development practices?

How to show a landlord what we have in savings?

How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?

Is this draw by repetition?

Knowledge-based authentication using Domain-driven Design in C#

How do I exit BASH while loop using modulus operator?

How can a day be of 24 hours?

How can saying a song's name be a copyright violation?

Unlock My Phone! February 2018

How does a refinance allow a mortgage to be repaid?

Does Dispel Magic work on Tiny Hut?

What is an equivalently powerful replacement spell for the Yuan-Ti's Suggestion spell?

Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?



Is there a function to partition an integer set?


Partition a set into subsets of size $k$Partition a set into $k$ non-empty subsetsHow to delete mirror symmetric point pair efficientlyPartition a range of integers into triplesSelecting last partition in integer partitionHow to partition a 2-D array properly?generating integer partitionsImproved a code to work once (no need to repeat)Partition a set of n objects into k subsets?Groupings of the Elements of a List with at Most $k$ Elements













5












$begingroup$


First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
$$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
(0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$



For a more general set $(0,1,2,...,n)$, there are $2^n-1$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?










share|improve this question









$endgroup$
















    5












    $begingroup$


    First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
    $$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
    (0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$



    For a more general set $(0,1,2,...,n)$, there are $2^n-1$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?










    share|improve this question









    $endgroup$














      5












      5








      5





      $begingroup$


      First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
      $$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
      (0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$



      For a more general set $(0,1,2,...,n)$, there are $2^n-1$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?










      share|improve this question









      $endgroup$




      First I give an example. For an integer set $(0,1,2,3,4)$, there are eight kinds of subdivision or partition like this
      $$(0,4);\~~(0,1)(1,4);~~(0,2)(2,4);~~(0,3)(3,4);\
      (0,1)(1,2)(2,4);~~(0,1)(1,3)(3,4);~~(0,2)(2,3)(3,4);~~\(0,1)(1,2)(2,3)(3,4); $$



      For a more general set $(0,1,2,...,n)$, there are $2^n-1$ kinds of partition.I believe that there must be a special name for this kind of partition mathematically. How can I realize it in MMA?







      list-manipulation combinatorics partitions






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked yesterday









      user10709user10709

      1186




      1186




















          1 Answer
          1






          active

          oldest

          votes


















          8












          $begingroup$

          P[n] will return the set you are asking



          P[n_] := Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]]

          P[4]



          0, 4, 0, 1, 1, 4, 0, 2, 2, 4, 0, 3, 3, 4, 0,
          1, 1, 2, 2, 4, 0, 1, 1, 3, 3, 4, 0, 2, 2, 3, 3,
          4, 0, 1, 1, 2, 2, 3, 3, 4







          share|improve this answer











          $endgroup$












          • $begingroup$
            Thanks, it works well!!!
            $endgroup$
            – user10709
            yesterday










          • $begingroup$
            @user10709 I'm glad I helped!
            $endgroup$
            – J42161217
            yesterday










          • $begingroup$
            Of course, you can combine the functions so that only one application of Map[] is needed: Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]].
            $endgroup$
            – J. M. is slightly pensive
            yesterday










          • $begingroup$
            @J.M.isslightlypensive yes, you are right
            $endgroup$
            – J42161217
            yesterday











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "387"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194351%2fis-there-a-function-to-partition-an-integer-set%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          8












          $begingroup$

          P[n] will return the set you are asking



          P[n_] := Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]]

          P[4]



          0, 4, 0, 1, 1, 4, 0, 2, 2, 4, 0, 3, 3, 4, 0,
          1, 1, 2, 2, 4, 0, 1, 1, 3, 3, 4, 0, 2, 2, 3, 3,
          4, 0, 1, 1, 2, 2, 3, 3, 4







          share|improve this answer











          $endgroup$












          • $begingroup$
            Thanks, it works well!!!
            $endgroup$
            – user10709
            yesterday










          • $begingroup$
            @user10709 I'm glad I helped!
            $endgroup$
            – J42161217
            yesterday










          • $begingroup$
            Of course, you can combine the functions so that only one application of Map[] is needed: Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]].
            $endgroup$
            – J. M. is slightly pensive
            yesterday










          • $begingroup$
            @J.M.isslightlypensive yes, you are right
            $endgroup$
            – J42161217
            yesterday















          8












          $begingroup$

          P[n] will return the set you are asking



          P[n_] := Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]]

          P[4]



          0, 4, 0, 1, 1, 4, 0, 2, 2, 4, 0, 3, 3, 4, 0,
          1, 1, 2, 2, 4, 0, 1, 1, 3, 3, 4, 0, 2, 2, 3, 3,
          4, 0, 1, 1, 2, 2, 3, 3, 4







          share|improve this answer











          $endgroup$












          • $begingroup$
            Thanks, it works well!!!
            $endgroup$
            – user10709
            yesterday










          • $begingroup$
            @user10709 I'm glad I helped!
            $endgroup$
            – J42161217
            yesterday










          • $begingroup$
            Of course, you can combine the functions so that only one application of Map[] is needed: Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]].
            $endgroup$
            – J. M. is slightly pensive
            yesterday










          • $begingroup$
            @J.M.isslightlypensive yes, you are right
            $endgroup$
            – J42161217
            yesterday













          8












          8








          8





          $begingroup$

          P[n] will return the set you are asking



          P[n_] := Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]]

          P[4]



          0, 4, 0, 1, 1, 4, 0, 2, 2, 4, 0, 3, 3, 4, 0,
          1, 1, 2, 2, 4, 0, 1, 1, 3, 3, 4, 0, 2, 2, 3, 3,
          4, 0, 1, 1, 2, 2, 3, 3, 4







          share|improve this answer











          $endgroup$



          P[n] will return the set you are asking



          P[n_] := Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]]

          P[4]



          0, 4, 0, 1, 1, 4, 0, 2, 2, 4, 0, 3, 3, 4, 0,
          1, 1, 2, 2, 4, 0, 1, 1, 3, 3, 4, 0, 2, 2, 3, 3,
          4, 0, 1, 1, 2, 2, 3, 3, 4








          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited yesterday

























          answered yesterday









          J42161217J42161217

          4,118324




          4,118324











          • $begingroup$
            Thanks, it works well!!!
            $endgroup$
            – user10709
            yesterday










          • $begingroup$
            @user10709 I'm glad I helped!
            $endgroup$
            – J42161217
            yesterday










          • $begingroup$
            Of course, you can combine the functions so that only one application of Map[] is needed: Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]].
            $endgroup$
            – J. M. is slightly pensive
            yesterday










          • $begingroup$
            @J.M.isslightlypensive yes, you are right
            $endgroup$
            – J42161217
            yesterday
















          • $begingroup$
            Thanks, it works well!!!
            $endgroup$
            – user10709
            yesterday










          • $begingroup$
            @user10709 I'm glad I helped!
            $endgroup$
            – J42161217
            yesterday










          • $begingroup$
            Of course, you can combine the functions so that only one application of Map[] is needed: Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]].
            $endgroup$
            – J. M. is slightly pensive
            yesterday










          • $begingroup$
            @J.M.isslightlypensive yes, you are right
            $endgroup$
            – J42161217
            yesterday















          $begingroup$
          Thanks, it works well!!!
          $endgroup$
          – user10709
          yesterday




          $begingroup$
          Thanks, it works well!!!
          $endgroup$
          – user10709
          yesterday












          $begingroup$
          @user10709 I'm glad I helped!
          $endgroup$
          – J42161217
          yesterday




          $begingroup$
          @user10709 I'm glad I helped!
          $endgroup$
          – J42161217
          yesterday












          $begingroup$
          Of course, you can combine the functions so that only one application of Map[] is needed: Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]].
          $endgroup$
          – J. M. is slightly pensive
          yesterday




          $begingroup$
          Of course, you can combine the functions so that only one application of Map[] is needed: Partition[Join[0, #, n], 2, 1] & /@ Subsets[Range[n - 1]].
          $endgroup$
          – J. M. is slightly pensive
          yesterday












          $begingroup$
          @J.M.isslightlypensive yes, you are right
          $endgroup$
          – J42161217
          yesterday




          $begingroup$
          @J.M.isslightlypensive yes, you are right
          $endgroup$
          – J42161217
          yesterday

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematica Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194351%2fis-there-a-function-to-partition-an-integer-set%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

          Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

          Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020