Arranging cats and dogs - what is wrong with my approach The Next CEO of Stack OverflowFour dogs and five cats race. In how many ways can this occur?What's wrong with my permutation logic?Find the number of ways this can be arranged in which no 2 women and no 2 men sit together given 4 men and 3 women are seated in a dinner table?In how many ways can the letters of word $PERMUTATIONS$ be arranged if there are always 4 letters between P and S?What is wrong in my attempt in permutations?Story Of naive Cats And Machiavellian MonkeyArranging $A$'s and $B$'s.Permutations of finishing a raceHow many strings of $6$ digits are there which use only the digits $0, 1$, or $2$ and in which $2$, whenever it appears, always does so after $1$?In how many ways can $n$ dogs and $k$ cats be arranged in a row so that no two cats are adjacent?

Yu-Gi-Oh cards in Python 3

Won the lottery - how do I keep the money?

Does higher Oxidation/ reduction potential translate to higher energy storage in battery?

Lucky Feat: How can "more than one creature spend a luck point to influence the outcome of a roll"?

What would be the main consequences for a country leaving the WTO?

How do I fit a non linear curve?

Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico

What is the difference between "hamstring tendon" and "common hamstring tendon"?

Do scriptures give a method to recognize a truly self-realized person/jivanmukta?

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

Is there a difference between "Fahrstuhl" and "Aufzug"?

How to avoid supervisors with prejudiced views?

Is French Guiana a (hard) EU border?

Point distance program written without a framework

What CSS properties can the br tag have?

Is it convenient to ask the journal's editor for two additional days to complete a review?

Help! I cannot understand this game’s notations!

Players Circumventing the limitations of Wish

IC has pull-down resistors on SMBus lines?

Is there an equivalent of cd - for cp or mv

Vector calculus integration identity problem

Film where the government was corrupt with aliens, people sent to kill aliens are given rigged visors not showing the right aliens

Is there a reasonable and studied concept of reduction between regular languages?

How did Beeri the Hittite come up with naming his daughter Yehudit?



Arranging cats and dogs - what is wrong with my approach



The Next CEO of Stack OverflowFour dogs and five cats race. In how many ways can this occur?What's wrong with my permutation logic?Find the number of ways this can be arranged in which no 2 women and no 2 men sit together given 4 men and 3 women are seated in a dinner table?In how many ways can the letters of word $PERMUTATIONS$ be arranged if there are always 4 letters between P and S?What is wrong in my attempt in permutations?Story Of naive Cats And Machiavellian MonkeyArranging $A$'s and $B$'s.Permutations of finishing a raceHow many strings of $6$ digits are there which use only the digits $0, 1$, or $2$ and in which $2$, whenever it appears, always does so after $1$?In how many ways can $n$ dogs and $k$ cats be arranged in a row so that no two cats are adjacent?










7












$begingroup$


We have 4 dogs and 3 cats in a line but no two cats can be together, in how many ways can they be arranged?



Since there are 5 spaces the cats can be in with the dogs fixed, there are $5 choose 3 * 4! * 3! = 1440$ ways and this is the correct answer.



I thought of a different approach. Instead of fixing the dogs' places, I fixed the places of the cats. Now, we have 4 spaces of which the two spaces in the middle must be filled. Therefore, out of the 4 dogs, 2 must fill those, and there are $4 * 3$ ways of doing this (since one dog must be chosen to fill one middle space and the other, to fill the second but now there are only 3 dogs left.)



The other two dogs are free to go to any of the 4 spaces, with $4^2$ possibilities.



The cats can now be arranged in $3!$ ways.



So, our final answer should be $3! * 4^2 * 4 * 3 = 1152$



Where have I gone wrong?










share|cite|improve this question







New contributor




Akshat Agarwal is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    Is your problem arising as a consequence of a rainfall ?
    $endgroup$
    – Jean Marie
    yesterday















7












$begingroup$


We have 4 dogs and 3 cats in a line but no two cats can be together, in how many ways can they be arranged?



Since there are 5 spaces the cats can be in with the dogs fixed, there are $5 choose 3 * 4! * 3! = 1440$ ways and this is the correct answer.



I thought of a different approach. Instead of fixing the dogs' places, I fixed the places of the cats. Now, we have 4 spaces of which the two spaces in the middle must be filled. Therefore, out of the 4 dogs, 2 must fill those, and there are $4 * 3$ ways of doing this (since one dog must be chosen to fill one middle space and the other, to fill the second but now there are only 3 dogs left.)



The other two dogs are free to go to any of the 4 spaces, with $4^2$ possibilities.



The cats can now be arranged in $3!$ ways.



So, our final answer should be $3! * 4^2 * 4 * 3 = 1152$



Where have I gone wrong?










share|cite|improve this question







New contributor




Akshat Agarwal is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    Is your problem arising as a consequence of a rainfall ?
    $endgroup$
    – Jean Marie
    yesterday













7












7








7


1



$begingroup$


We have 4 dogs and 3 cats in a line but no two cats can be together, in how many ways can they be arranged?



Since there are 5 spaces the cats can be in with the dogs fixed, there are $5 choose 3 * 4! * 3! = 1440$ ways and this is the correct answer.



I thought of a different approach. Instead of fixing the dogs' places, I fixed the places of the cats. Now, we have 4 spaces of which the two spaces in the middle must be filled. Therefore, out of the 4 dogs, 2 must fill those, and there are $4 * 3$ ways of doing this (since one dog must be chosen to fill one middle space and the other, to fill the second but now there are only 3 dogs left.)



The other two dogs are free to go to any of the 4 spaces, with $4^2$ possibilities.



The cats can now be arranged in $3!$ ways.



So, our final answer should be $3! * 4^2 * 4 * 3 = 1152$



Where have I gone wrong?










share|cite|improve this question







New contributor




Akshat Agarwal is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




We have 4 dogs and 3 cats in a line but no two cats can be together, in how many ways can they be arranged?



Since there are 5 spaces the cats can be in with the dogs fixed, there are $5 choose 3 * 4! * 3! = 1440$ ways and this is the correct answer.



I thought of a different approach. Instead of fixing the dogs' places, I fixed the places of the cats. Now, we have 4 spaces of which the two spaces in the middle must be filled. Therefore, out of the 4 dogs, 2 must fill those, and there are $4 * 3$ ways of doing this (since one dog must be chosen to fill one middle space and the other, to fill the second but now there are only 3 dogs left.)



The other two dogs are free to go to any of the 4 spaces, with $4^2$ possibilities.



The cats can now be arranged in $3!$ ways.



So, our final answer should be $3! * 4^2 * 4 * 3 = 1152$



Where have I gone wrong?







combinatorics permutations






share|cite|improve this question







New contributor




Akshat Agarwal is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Akshat Agarwal is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Akshat Agarwal is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









Akshat AgarwalAkshat Agarwal

512




512




New contributor




Akshat Agarwal is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Akshat Agarwal is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Akshat Agarwal is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 2




    $begingroup$
    Is your problem arising as a consequence of a rainfall ?
    $endgroup$
    – Jean Marie
    yesterday












  • 2




    $begingroup$
    Is your problem arising as a consequence of a rainfall ?
    $endgroup$
    – Jean Marie
    yesterday







2




2




$begingroup$
Is your problem arising as a consequence of a rainfall ?
$endgroup$
– Jean Marie
yesterday




$begingroup$
Is your problem arising as a consequence of a rainfall ?
$endgroup$
– Jean Marie
yesterday










2 Answers
2






active

oldest

votes


















6












$begingroup$

The second computation is missing a symmetry. Say your initial pattern is $$underline quadC_1underline quadC_2underline quadC_3underline quad$$



You then populate the spaces immediately to the right of $C_1$, and $C_2$. As:



$$underline quadC_1D_1underline quadC_2D_2underline quadC_3underline quad$$



So far so good. You still have $D_3,D_4$ to place. Where can they go? True, they can each go to any of the four spaces, but if, say, they both go to the first space, in which order do they go?



Taking the two possible orders into account, we see that you are missing $$4times 3!times 4times 3=288$$ cases. Adding them back gives you the desired result.



Phrased differently: once you have placed $D_3$ there are now five available spaces for $D_4$ (since $D_4$ might go either to the left or to the right of $D_3$). thus you should have had $$3!times 4times 5times 4times 3=1440$$






share|cite|improve this answer











$endgroup$




















    0












    $begingroup$

    You can separate the two cases for the two last dogs: single dogs and double dogs.



    Single dogs:
    $$P(4,2)=frac4!2!=12.$$
    Double dogs:
    $$P(2,2)cdot C(4,1)=2cdot 4=8.$$
    Hence, there are $12+8=20$ (not $4^2=16$) ways to distribute the last two dogs.



    The final answer is:
    $$3!cdot 20cdot 4cdot 3=1440.$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Akshat Agarwal is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168195%2farranging-cats-and-dogs-what-is-wrong-with-my-approach%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      The second computation is missing a symmetry. Say your initial pattern is $$underline quadC_1underline quadC_2underline quadC_3underline quad$$



      You then populate the spaces immediately to the right of $C_1$, and $C_2$. As:



      $$underline quadC_1D_1underline quadC_2D_2underline quadC_3underline quad$$



      So far so good. You still have $D_3,D_4$ to place. Where can they go? True, they can each go to any of the four spaces, but if, say, they both go to the first space, in which order do they go?



      Taking the two possible orders into account, we see that you are missing $$4times 3!times 4times 3=288$$ cases. Adding them back gives you the desired result.



      Phrased differently: once you have placed $D_3$ there are now five available spaces for $D_4$ (since $D_4$ might go either to the left or to the right of $D_3$). thus you should have had $$3!times 4times 5times 4times 3=1440$$






      share|cite|improve this answer











      $endgroup$

















        6












        $begingroup$

        The second computation is missing a symmetry. Say your initial pattern is $$underline quadC_1underline quadC_2underline quadC_3underline quad$$



        You then populate the spaces immediately to the right of $C_1$, and $C_2$. As:



        $$underline quadC_1D_1underline quadC_2D_2underline quadC_3underline quad$$



        So far so good. You still have $D_3,D_4$ to place. Where can they go? True, they can each go to any of the four spaces, but if, say, they both go to the first space, in which order do they go?



        Taking the two possible orders into account, we see that you are missing $$4times 3!times 4times 3=288$$ cases. Adding them back gives you the desired result.



        Phrased differently: once you have placed $D_3$ there are now five available spaces for $D_4$ (since $D_4$ might go either to the left or to the right of $D_3$). thus you should have had $$3!times 4times 5times 4times 3=1440$$






        share|cite|improve this answer











        $endgroup$















          6












          6








          6





          $begingroup$

          The second computation is missing a symmetry. Say your initial pattern is $$underline quadC_1underline quadC_2underline quadC_3underline quad$$



          You then populate the spaces immediately to the right of $C_1$, and $C_2$. As:



          $$underline quadC_1D_1underline quadC_2D_2underline quadC_3underline quad$$



          So far so good. You still have $D_3,D_4$ to place. Where can they go? True, they can each go to any of the four spaces, but if, say, they both go to the first space, in which order do they go?



          Taking the two possible orders into account, we see that you are missing $$4times 3!times 4times 3=288$$ cases. Adding them back gives you the desired result.



          Phrased differently: once you have placed $D_3$ there are now five available spaces for $D_4$ (since $D_4$ might go either to the left or to the right of $D_3$). thus you should have had $$3!times 4times 5times 4times 3=1440$$






          share|cite|improve this answer











          $endgroup$



          The second computation is missing a symmetry. Say your initial pattern is $$underline quadC_1underline quadC_2underline quadC_3underline quad$$



          You then populate the spaces immediately to the right of $C_1$, and $C_2$. As:



          $$underline quadC_1D_1underline quadC_2D_2underline quadC_3underline quad$$



          So far so good. You still have $D_3,D_4$ to place. Where can they go? True, they can each go to any of the four spaces, but if, say, they both go to the first space, in which order do they go?



          Taking the two possible orders into account, we see that you are missing $$4times 3!times 4times 3=288$$ cases. Adding them back gives you the desired result.



          Phrased differently: once you have placed $D_3$ there are now five available spaces for $D_4$ (since $D_4$ might go either to the left or to the right of $D_3$). thus you should have had $$3!times 4times 5times 4times 3=1440$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered yesterday









          lulululu

          43.3k25080




          43.3k25080





















              0












              $begingroup$

              You can separate the two cases for the two last dogs: single dogs and double dogs.



              Single dogs:
              $$P(4,2)=frac4!2!=12.$$
              Double dogs:
              $$P(2,2)cdot C(4,1)=2cdot 4=8.$$
              Hence, there are $12+8=20$ (not $4^2=16$) ways to distribute the last two dogs.



              The final answer is:
              $$3!cdot 20cdot 4cdot 3=1440.$$






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                You can separate the two cases for the two last dogs: single dogs and double dogs.



                Single dogs:
                $$P(4,2)=frac4!2!=12.$$
                Double dogs:
                $$P(2,2)cdot C(4,1)=2cdot 4=8.$$
                Hence, there are $12+8=20$ (not $4^2=16$) ways to distribute the last two dogs.



                The final answer is:
                $$3!cdot 20cdot 4cdot 3=1440.$$






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  You can separate the two cases for the two last dogs: single dogs and double dogs.



                  Single dogs:
                  $$P(4,2)=frac4!2!=12.$$
                  Double dogs:
                  $$P(2,2)cdot C(4,1)=2cdot 4=8.$$
                  Hence, there are $12+8=20$ (not $4^2=16$) ways to distribute the last two dogs.



                  The final answer is:
                  $$3!cdot 20cdot 4cdot 3=1440.$$






                  share|cite|improve this answer









                  $endgroup$



                  You can separate the two cases for the two last dogs: single dogs and double dogs.



                  Single dogs:
                  $$P(4,2)=frac4!2!=12.$$
                  Double dogs:
                  $$P(2,2)cdot C(4,1)=2cdot 4=8.$$
                  Hence, there are $12+8=20$ (not $4^2=16$) ways to distribute the last two dogs.



                  The final answer is:
                  $$3!cdot 20cdot 4cdot 3=1440.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  farruhotafarruhota

                  21.8k2842




                  21.8k2842




















                      Akshat Agarwal is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Akshat Agarwal is a new contributor. Be nice, and check out our Code of Conduct.












                      Akshat Agarwal is a new contributor. Be nice, and check out our Code of Conduct.











                      Akshat Agarwal is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168195%2farranging-cats-and-dogs-what-is-wrong-with-my-approach%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                      Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                      Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020