If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace. The Next CEO of Stack OverflowProve that S forms a subspace of R^3Prove that is a subspaceWhy do these vectors not belong to the same vector space?Am I correctly determining whether the vectors are in the subspace?Prove the following set of vectors is a subspaceCan a subspace S containing vectors with a finite number of nonzero components contain the zero vector?Vector subspace of two linear transformationsProve that if the following two vectors are not parallel that the following holds.Are the polynomials of form $a_0 + a_1x + a_2x^2 +a_3x^3$, with $a_i$ rational, a subspace of $P_3$?Why are all vectors with exactly one nonzero component not a subspace of $mathbbR^3$?

Towers in the ocean; How deep can they be built?

Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico

Spaces in which all closed sets are regular closed

Which one is the true statement?

Defamation due to breach of confidentiality

Is there a difference between "Fahrstuhl" and "Aufzug"?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

How did Beeri the Hittite come up with naming his daughter Yehudit?

Is there such a thing as a proper verb, like a proper noun?

What are the unusually-enlarged wing sections on this P-38 Lightning?

Airplane gently rocking its wings during whole flight

Reshaping json / reparing json inside shell script (remove trailing comma)

Where do students learn to solve polynomial equations these days?

Can I calculate next year's exemptions based on this year's refund/amount owed?

Getting Stale Gas Out of a Gas Tank w/out Dropping the Tank

Is it OK to decorate a log book cover?

Could a dragon use its wings to swim?

Audio Conversion With ADS1243

Expressing the idea of having a very busy time

what's the use of '% to gdp' type of variables?

Point distance program written without a framework

Why am I getting "Static method cannot be referenced from a non static context: String String.valueOf(Object)"?

Reference request: Grassmannian and Plucker coordinates in type B, C, D

Can you teleport closer to a creature you are Frightened of?



If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace.



The Next CEO of Stack OverflowProve that S forms a subspace of R^3Prove that is a subspaceWhy do these vectors not belong to the same vector space?Am I correctly determining whether the vectors are in the subspace?Prove the following set of vectors is a subspaceCan a subspace S containing vectors with a finite number of nonzero components contain the zero vector?Vector subspace of two linear transformationsProve that if the following two vectors are not parallel that the following holds.Are the polynomials of form $a_0 + a_1x + a_2x^2 +a_3x^3$, with $a_i$ rational, a subspace of $P_3$?Why are all vectors with exactly one nonzero component not a subspace of $mathbbR^3$?










2












$begingroup$


If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace.



I would like to first understand if I am interpreting the question correctly. My understanding of this question is that I need to first prove that the set of vectors b are equal to the 0 vector, and if b1 and b2 are members of the subspace, then the sum of set b should be a member, and so should some scalar C multiplied by the set of vectors b. I just don't understand how to actually prove this










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace.



    I would like to first understand if I am interpreting the question correctly. My understanding of this question is that I need to first prove that the set of vectors b are equal to the 0 vector, and if b1 and b2 are members of the subspace, then the sum of set b should be a member, and so should some scalar C multiplied by the set of vectors b. I just don't understand how to actually prove this










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace.



      I would like to first understand if I am interpreting the question correctly. My understanding of this question is that I need to first prove that the set of vectors b are equal to the 0 vector, and if b1 and b2 are members of the subspace, then the sum of set b should be a member, and so should some scalar C multiplied by the set of vectors b. I just don't understand how to actually prove this










      share|cite|improve this question











      $endgroup$




      If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace.



      I would like to first understand if I am interpreting the question correctly. My understanding of this question is that I need to first prove that the set of vectors b are equal to the 0 vector, and if b1 and b2 are members of the subspace, then the sum of set b should be a member, and so should some scalar C multiplied by the set of vectors b. I just don't understand how to actually prove this







      linear-algebra matrices vector-spaces






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday









      YuiTo Cheng

      2,1862937




      2,1862937










      asked yesterday









      AdamAdam

      345




      345




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Your result is wrong. Maybe this picture can help you figure out.



          enter image description here



          Since every subspace must contain the zero vector, noted by $underline0$.



          We know that $C(A)$ is a subspace for $mathbbR^m$, so $underline0in C(A) subseteq mathbbR^m$, that means the zero vector are inside the column space and also $mathbbR^m$.



          But if we consider $mathbbR^msetminus C(A)$, by the picture, it means we are now cancelling the red circle out, so the zero vector is no longer inside this "space".



          Therefore, it can not form a subspace.






          share|cite|improve this answer









          $endgroup$




















            5












            $begingroup$

            Your first condition should be $0$ is in a subspace.



            Also, the result is not true.



            Let $0_m$ be the zero vector in $mathbbR^m$. We know that $0_m in C(A)$ since $sum_i=1^n A_i cdot 0=0_m$.



            $0_m$ is in $C(A)$, $0_m$ can't be in the set of vector that are not in $C(A)$. Hence the set of vectors that are not in $C(A)$ can't form a subspace.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              How do I know that 0 is in C(A)?
              $endgroup$
              – Adam
              yesterday











            • $begingroup$
              $C(A)$ is the column space right?
              $endgroup$
              – Siong Thye Goh
              yesterday










            • $begingroup$
              Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
              $endgroup$
              – Adam
              yesterday






            • 1




              $begingroup$
              I have included an explaination of why $0_m in C(A)$.
              $endgroup$
              – Siong Thye Goh
              yesterday











            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168021%2fif-a-is-an-m-by-n-matrix-prove-that-the-set-of-vectors-b-that-are-not-in-ca-f%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Your result is wrong. Maybe this picture can help you figure out.



            enter image description here



            Since every subspace must contain the zero vector, noted by $underline0$.



            We know that $C(A)$ is a subspace for $mathbbR^m$, so $underline0in C(A) subseteq mathbbR^m$, that means the zero vector are inside the column space and also $mathbbR^m$.



            But if we consider $mathbbR^msetminus C(A)$, by the picture, it means we are now cancelling the red circle out, so the zero vector is no longer inside this "space".



            Therefore, it can not form a subspace.






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              Your result is wrong. Maybe this picture can help you figure out.



              enter image description here



              Since every subspace must contain the zero vector, noted by $underline0$.



              We know that $C(A)$ is a subspace for $mathbbR^m$, so $underline0in C(A) subseteq mathbbR^m$, that means the zero vector are inside the column space and also $mathbbR^m$.



              But if we consider $mathbbR^msetminus C(A)$, by the picture, it means we are now cancelling the red circle out, so the zero vector is no longer inside this "space".



              Therefore, it can not form a subspace.






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                Your result is wrong. Maybe this picture can help you figure out.



                enter image description here



                Since every subspace must contain the zero vector, noted by $underline0$.



                We know that $C(A)$ is a subspace for $mathbbR^m$, so $underline0in C(A) subseteq mathbbR^m$, that means the zero vector are inside the column space and also $mathbbR^m$.



                But if we consider $mathbbR^msetminus C(A)$, by the picture, it means we are now cancelling the red circle out, so the zero vector is no longer inside this "space".



                Therefore, it can not form a subspace.






                share|cite|improve this answer









                $endgroup$



                Your result is wrong. Maybe this picture can help you figure out.



                enter image description here



                Since every subspace must contain the zero vector, noted by $underline0$.



                We know that $C(A)$ is a subspace for $mathbbR^m$, so $underline0in C(A) subseteq mathbbR^m$, that means the zero vector are inside the column space and also $mathbbR^m$.



                But if we consider $mathbbR^msetminus C(A)$, by the picture, it means we are now cancelling the red circle out, so the zero vector is no longer inside this "space".



                Therefore, it can not form a subspace.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered yesterday









                Jade PangJade Pang

                1964




                1964





















                    5












                    $begingroup$

                    Your first condition should be $0$ is in a subspace.



                    Also, the result is not true.



                    Let $0_m$ be the zero vector in $mathbbR^m$. We know that $0_m in C(A)$ since $sum_i=1^n A_i cdot 0=0_m$.



                    $0_m$ is in $C(A)$, $0_m$ can't be in the set of vector that are not in $C(A)$. Hence the set of vectors that are not in $C(A)$ can't form a subspace.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      How do I know that 0 is in C(A)?
                      $endgroup$
                      – Adam
                      yesterday











                    • $begingroup$
                      $C(A)$ is the column space right?
                      $endgroup$
                      – Siong Thye Goh
                      yesterday










                    • $begingroup$
                      Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                      $endgroup$
                      – Adam
                      yesterday






                    • 1




                      $begingroup$
                      I have included an explaination of why $0_m in C(A)$.
                      $endgroup$
                      – Siong Thye Goh
                      yesterday















                    5












                    $begingroup$

                    Your first condition should be $0$ is in a subspace.



                    Also, the result is not true.



                    Let $0_m$ be the zero vector in $mathbbR^m$. We know that $0_m in C(A)$ since $sum_i=1^n A_i cdot 0=0_m$.



                    $0_m$ is in $C(A)$, $0_m$ can't be in the set of vector that are not in $C(A)$. Hence the set of vectors that are not in $C(A)$ can't form a subspace.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      How do I know that 0 is in C(A)?
                      $endgroup$
                      – Adam
                      yesterday











                    • $begingroup$
                      $C(A)$ is the column space right?
                      $endgroup$
                      – Siong Thye Goh
                      yesterday










                    • $begingroup$
                      Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                      $endgroup$
                      – Adam
                      yesterday






                    • 1




                      $begingroup$
                      I have included an explaination of why $0_m in C(A)$.
                      $endgroup$
                      – Siong Thye Goh
                      yesterday













                    5












                    5








                    5





                    $begingroup$

                    Your first condition should be $0$ is in a subspace.



                    Also, the result is not true.



                    Let $0_m$ be the zero vector in $mathbbR^m$. We know that $0_m in C(A)$ since $sum_i=1^n A_i cdot 0=0_m$.



                    $0_m$ is in $C(A)$, $0_m$ can't be in the set of vector that are not in $C(A)$. Hence the set of vectors that are not in $C(A)$ can't form a subspace.






                    share|cite|improve this answer











                    $endgroup$



                    Your first condition should be $0$ is in a subspace.



                    Also, the result is not true.



                    Let $0_m$ be the zero vector in $mathbbR^m$. We know that $0_m in C(A)$ since $sum_i=1^n A_i cdot 0=0_m$.



                    $0_m$ is in $C(A)$, $0_m$ can't be in the set of vector that are not in $C(A)$. Hence the set of vectors that are not in $C(A)$ can't form a subspace.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited yesterday

























                    answered yesterday









                    Siong Thye GohSiong Thye Goh

                    103k1468119




                    103k1468119











                    • $begingroup$
                      How do I know that 0 is in C(A)?
                      $endgroup$
                      – Adam
                      yesterday











                    • $begingroup$
                      $C(A)$ is the column space right?
                      $endgroup$
                      – Siong Thye Goh
                      yesterday










                    • $begingroup$
                      Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                      $endgroup$
                      – Adam
                      yesterday






                    • 1




                      $begingroup$
                      I have included an explaination of why $0_m in C(A)$.
                      $endgroup$
                      – Siong Thye Goh
                      yesterday
















                    • $begingroup$
                      How do I know that 0 is in C(A)?
                      $endgroup$
                      – Adam
                      yesterday











                    • $begingroup$
                      $C(A)$ is the column space right?
                      $endgroup$
                      – Siong Thye Goh
                      yesterday










                    • $begingroup$
                      Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                      $endgroup$
                      – Adam
                      yesterday






                    • 1




                      $begingroup$
                      I have included an explaination of why $0_m in C(A)$.
                      $endgroup$
                      – Siong Thye Goh
                      yesterday















                    $begingroup$
                    How do I know that 0 is in C(A)?
                    $endgroup$
                    – Adam
                    yesterday





                    $begingroup$
                    How do I know that 0 is in C(A)?
                    $endgroup$
                    – Adam
                    yesterday













                    $begingroup$
                    $C(A)$ is the column space right?
                    $endgroup$
                    – Siong Thye Goh
                    yesterday




                    $begingroup$
                    $C(A)$ is the column space right?
                    $endgroup$
                    – Siong Thye Goh
                    yesterday












                    $begingroup$
                    Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                    $endgroup$
                    – Adam
                    yesterday




                    $begingroup$
                    Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                    $endgroup$
                    – Adam
                    yesterday




                    1




                    1




                    $begingroup$
                    I have included an explaination of why $0_m in C(A)$.
                    $endgroup$
                    – Siong Thye Goh
                    yesterday




                    $begingroup$
                    I have included an explaination of why $0_m in C(A)$.
                    $endgroup$
                    – Siong Thye Goh
                    yesterday

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168021%2fif-a-is-an-m-by-n-matrix-prove-that-the-set-of-vectors-b-that-are-not-in-ca-f%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    RemoteApp sporadic failureWindows 2008 RemoteAPP client disconnects within a matter of minutesWhat is the minimum version of RDP supported by Server 2012 RDS?How to configure a Remoteapp server to increase stabilityMicrosoft RemoteApp Active SessionRDWeb TS connection broken for some users post RemoteApp certificate changeRemote Desktop Licensing, RemoteAPPRDS 2012 R2 some users are not able to logon after changed date and time on Connection BrokersWhat happens during Remote Desktop logon, and is there any logging?After installing RDS on WinServer 2016 I still can only connect with two users?RD Connection via RDGW to Session host is not connecting

                    How to write a 12-bar blues melodyI-IV-V blues progressionHow to play the bridges in a standard blues progressionHow does Gdim7 fit in C# minor?question on a certain chord progressionMusicology of Melody12 bar blues, spread rhythm: alternative to 6th chord to avoid finger stretchChord progressions/ Root key/ MelodiesHow to put chords (POP-EDM) under a given lead vocal melody (starting from a good knowledge in music theory)Are there “rules” for improvising with the minor pentatonic scale over 12-bar shuffle?Confusion about blues scale and chords

                    Esgonzo ibérico Índice Descrición Distribución Hábitat Ameazas Notas Véxase tamén "Acerca dos nomes dos anfibios e réptiles galegos""Chalcides bedriagai"Chalcides bedriagai en Carrascal, L. M. Salvador, A. (Eds). Enciclopedia virtual de los vertebrados españoles. Museo Nacional de Ciencias Naturales, Madrid. España.Fotos