Solving system of ODEs with extra parameter The Next CEO of Stack OverflowTransforming ParametricFunction in expression depending on the parameterSolving a system of ODEs with the Runge-Kutta methodTips for efficiently solving large system coupled (nonlinear) ODEsHow do I pull from a data list for parameter values in a system of ODEs and then solve and plot?Solving PDEs with complicated boundary conditionsSolving Differential Algebraic Equations as BVPSolving a system of coupled Nonlinear ODEs using numeric and get `ndnum` errorIssues to modelize a system of differential equation (NDSolve)Solving PDEs over a region in different co-ordinate system?Error when solving 't Hooft-Polyakov radial equations using NDSolveHow to apply NIntegrate three times

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

What would be the main consequences for a country leaving the WTO?

How to calculate the two limits?

What flight has the highest ratio of timezone difference to flight time?

Reshaping json / reparing json inside shell script (remove trailing comma)

Aggressive Under-Indexing and no data for missing index

Is it convenient to ask the journal's editor for two additional days to complete a review?

TikZ: How to fill area with a special pattern?

What day is it again?

Is it ok to trim down a tube patch?

Is fine stranded wire ok for main supply line?

how one can write a nice vector parser, something that does pgfvecparseA=B-C; D=E x F;

Physiological effects of huge anime eyes

Does the Idaho Potato Commission associate potato skins with healthy eating?

How do I fit a non linear curve?

Is there a difference between "Fahrstuhl" and "Aufzug"?

Players Circumventing the limitations of Wish

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

Calculate the Mean mean of two numbers

What CSS properties can the br tag have?

How to use ReplaceAll on an expression that contains a rule

(How) Could a medieval fantasy world survive a magic-induced "nuclear winter"?

Vector calculus integration identity problem

Is there a way to save my career from absolute disaster?



Solving system of ODEs with extra parameter



The Next CEO of Stack OverflowTransforming ParametricFunction in expression depending on the parameterSolving a system of ODEs with the Runge-Kutta methodTips for efficiently solving large system coupled (nonlinear) ODEsHow do I pull from a data list for parameter values in a system of ODEs and then solve and plot?Solving PDEs with complicated boundary conditionsSolving Differential Algebraic Equations as BVPSolving a system of coupled Nonlinear ODEs using numeric and get `ndnum` errorIssues to modelize a system of differential equation (NDSolve)Solving PDEs over a region in different co-ordinate system?Error when solving 't Hooft-Polyakov radial equations using NDSolveHow to apply NIntegrate three times










3












$begingroup$


I would like to solve a $2times 2$ system of the form
$$fracddthetaT=TA,quad T(0)=Id$$
where $theta$ is real and $A$ is of the form
$$A=beginpmatrix 0 & frace^-i thetalambda\ frac136e^-ithetaleft(9lambda + 2(lambda-1)^2 (6costheta + cos2theta + 6)right) & 0endpmatrix,$$
with $lambda$ a free parameter in the unit circle.



In particular I'm interested in obtaining numeric solutions at $theta=2pi$ depending on the extra parameter $lambda$. I'm fairly new using Mathematica, and this is what I have tried so far:



T[θ_] = T11[θ], T12[θ], T21[θ], T22[θ];
A[θ_] =
0, E^(-I θ)/λ,
1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0
;
sys = T'[θ] == T[θ].A[θ];


The previous code sets the system that I want to solve and now I try to solve numerically. First I've tried



NSol = NDSolve[
sys, T11[0] == 1, T12[0] == 0, T21[0] == 0, T22[0] == 1,
T11[θ], T12[θ], T21[θ], T22[θ],
θ,
θ, 0, 2 Pi
];


which gives me the output



NDSolve::dupv: "Duplicate variable θ found in NDSolve[<<1>>]."


I have also tried



Nsol2 = ParametricNDSolve[
sys, T11[0] == 1, T12[0] == 0, T21[0] == 0, T22[0] == 1,
T11, T12, T21, T22,
θ, 0, 2 Pi,
λ
];


which gives me as output $T_11,dots,T_22$ as ParametricFunctions depending on each other and on $lambda$.



I don't know if this is the right approach and, if so, how to extract a numeric expression depending on $lambda$ from the last output - all that I've seen in the documentation are examples that are plotted for specific values of the parameter. Any help is much appreciated.



EDIT




Following the comments in one of the answers I'd like to explain further: the output that I would like to obtain is some sort of function depending of the parameter $lambda$ that I can manipulate afterwards. Say for instance, computing the series expansion of powers of $lambda$ of my solution. I don't know how to treat the ParametricFunction that I obtain to do such computations.











share|improve this question











$endgroup$
















    3












    $begingroup$


    I would like to solve a $2times 2$ system of the form
    $$fracddthetaT=TA,quad T(0)=Id$$
    where $theta$ is real and $A$ is of the form
    $$A=beginpmatrix 0 & frace^-i thetalambda\ frac136e^-ithetaleft(9lambda + 2(lambda-1)^2 (6costheta + cos2theta + 6)right) & 0endpmatrix,$$
    with $lambda$ a free parameter in the unit circle.



    In particular I'm interested in obtaining numeric solutions at $theta=2pi$ depending on the extra parameter $lambda$. I'm fairly new using Mathematica, and this is what I have tried so far:



    T[θ_] = T11[θ], T12[θ], T21[θ], T22[θ];
    A[θ_] =
    0, E^(-I θ)/λ,
    1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0
    ;
    sys = T'[θ] == T[θ].A[θ];


    The previous code sets the system that I want to solve and now I try to solve numerically. First I've tried



    NSol = NDSolve[
    sys, T11[0] == 1, T12[0] == 0, T21[0] == 0, T22[0] == 1,
    T11[θ], T12[θ], T21[θ], T22[θ],
    θ,
    θ, 0, 2 Pi
    ];


    which gives me the output



    NDSolve::dupv: "Duplicate variable θ found in NDSolve[<<1>>]."


    I have also tried



    Nsol2 = ParametricNDSolve[
    sys, T11[0] == 1, T12[0] == 0, T21[0] == 0, T22[0] == 1,
    T11, T12, T21, T22,
    θ, 0, 2 Pi,
    λ
    ];


    which gives me as output $T_11,dots,T_22$ as ParametricFunctions depending on each other and on $lambda$.



    I don't know if this is the right approach and, if so, how to extract a numeric expression depending on $lambda$ from the last output - all that I've seen in the documentation are examples that are plotted for specific values of the parameter. Any help is much appreciated.



    EDIT




    Following the comments in one of the answers I'd like to explain further: the output that I would like to obtain is some sort of function depending of the parameter $lambda$ that I can manipulate afterwards. Say for instance, computing the series expansion of powers of $lambda$ of my solution. I don't know how to treat the ParametricFunction that I obtain to do such computations.











    share|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I would like to solve a $2times 2$ system of the form
      $$fracddthetaT=TA,quad T(0)=Id$$
      where $theta$ is real and $A$ is of the form
      $$A=beginpmatrix 0 & frace^-i thetalambda\ frac136e^-ithetaleft(9lambda + 2(lambda-1)^2 (6costheta + cos2theta + 6)right) & 0endpmatrix,$$
      with $lambda$ a free parameter in the unit circle.



      In particular I'm interested in obtaining numeric solutions at $theta=2pi$ depending on the extra parameter $lambda$. I'm fairly new using Mathematica, and this is what I have tried so far:



      T[θ_] = T11[θ], T12[θ], T21[θ], T22[θ];
      A[θ_] =
      0, E^(-I θ)/λ,
      1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0
      ;
      sys = T'[θ] == T[θ].A[θ];


      The previous code sets the system that I want to solve and now I try to solve numerically. First I've tried



      NSol = NDSolve[
      sys, T11[0] == 1, T12[0] == 0, T21[0] == 0, T22[0] == 1,
      T11[θ], T12[θ], T21[θ], T22[θ],
      θ,
      θ, 0, 2 Pi
      ];


      which gives me the output



      NDSolve::dupv: "Duplicate variable θ found in NDSolve[<<1>>]."


      I have also tried



      Nsol2 = ParametricNDSolve[
      sys, T11[0] == 1, T12[0] == 0, T21[0] == 0, T22[0] == 1,
      T11, T12, T21, T22,
      θ, 0, 2 Pi,
      λ
      ];


      which gives me as output $T_11,dots,T_22$ as ParametricFunctions depending on each other and on $lambda$.



      I don't know if this is the right approach and, if so, how to extract a numeric expression depending on $lambda$ from the last output - all that I've seen in the documentation are examples that are plotted for specific values of the parameter. Any help is much appreciated.



      EDIT




      Following the comments in one of the answers I'd like to explain further: the output that I would like to obtain is some sort of function depending of the parameter $lambda$ that I can manipulate afterwards. Say for instance, computing the series expansion of powers of $lambda$ of my solution. I don't know how to treat the ParametricFunction that I obtain to do such computations.











      share|improve this question











      $endgroup$




      I would like to solve a $2times 2$ system of the form
      $$fracddthetaT=TA,quad T(0)=Id$$
      where $theta$ is real and $A$ is of the form
      $$A=beginpmatrix 0 & frace^-i thetalambda\ frac136e^-ithetaleft(9lambda + 2(lambda-1)^2 (6costheta + cos2theta + 6)right) & 0endpmatrix,$$
      with $lambda$ a free parameter in the unit circle.



      In particular I'm interested in obtaining numeric solutions at $theta=2pi$ depending on the extra parameter $lambda$. I'm fairly new using Mathematica, and this is what I have tried so far:



      T[θ_] = T11[θ], T12[θ], T21[θ], T22[θ];
      A[θ_] =
      0, E^(-I θ)/λ,
      1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0
      ;
      sys = T'[θ] == T[θ].A[θ];


      The previous code sets the system that I want to solve and now I try to solve numerically. First I've tried



      NSol = NDSolve[
      sys, T11[0] == 1, T12[0] == 0, T21[0] == 0, T22[0] == 1,
      T11[θ], T12[θ], T21[θ], T22[θ],
      θ,
      θ, 0, 2 Pi
      ];


      which gives me the output



      NDSolve::dupv: "Duplicate variable θ found in NDSolve[<<1>>]."


      I have also tried



      Nsol2 = ParametricNDSolve[
      sys, T11[0] == 1, T12[0] == 0, T21[0] == 0, T22[0] == 1,
      T11, T12, T21, T22,
      θ, 0, 2 Pi,
      λ
      ];


      which gives me as output $T_11,dots,T_22$ as ParametricFunctions depending on each other and on $lambda$.



      I don't know if this is the right approach and, if so, how to extract a numeric expression depending on $lambda$ from the last output - all that I've seen in the documentation are examples that are plotted for specific values of the parameter. Any help is much appreciated.



      EDIT




      Following the comments in one of the answers I'd like to explain further: the output that I would like to obtain is some sort of function depending of the parameter $lambda$ that I can manipulate afterwards. Say for instance, computing the series expansion of powers of $lambda$ of my solution. I don't know how to treat the ParametricFunction that I obtain to do such computations.








      differential-equations numerical-integration






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited yesterday









      Carl Woll

      72.1k395186




      72.1k395186










      asked yesterday









      EduEdu

      1476




      1476




















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          Here is how to obtain the series expansion of the matrix components. First, using a tweaked version (solving for t[2π] instead of t) of JM's formulation:



          A[θ_] = 
          0, E^(-I θ)/λ,
          1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0
          ;

          pf = ParametricNDSolveValue[

          t'[θ] == t[θ].A[θ], t[0] == IdentityMatrix[2]
          ,
          t[2π],
          θ, 0, 2π,
          λ
          ];


          Then, pf will return the matrix value at $theta = 2 pi$. For example:



          pf[1]
          pf[Exp[I Pi/3]]



          1. + 3.62818*10^-9 I,
          6.82646*10^-8 - 5.73536*10^-9 I, 1.70661*10^-8 - 1.43384*10^-9 I,
          1. + 3.62818*10^-9 I



          0.985595 + 1.17074 I, -0.425572 + 0.737112 I, -0.788363 - 1.36549 I,
          0.985595 - 1.17074 I




          Finding the series expansion is simple:



          DecimalForm[Series[pf[λ], λ, 1, 5], 4,4] //TeXForm



          $left(
          beginarraycc
          1.0000 & 6.2830 \
          1.5710 & 1.0000 \
          endarray
          right)+left(
          beginarraycc
          0.0000+0.0000 i & -6.2830+0.0000 i \
          1.5710+0.0000 i & 0.0000+0.0000 i \
          endarray
          right) (lambda -1)+left(
          beginarraycc
          0.0000-0.7869 i & 0.6691-0.0000 i \
          0.8799+0.0000 i & -0.0000+0.7869 i \
          endarray
          right) (lambda -1)^2+left(
          beginarraycc
          0.0000+0.7869 i & -1.3380+0.0000 i \
          0.0000+0.0000 i & 0.0000-0.7869 i \
          endarray
          right) (lambda -1)^3+left(
          beginarraycc
          -0.0152-0.4524 i & 1.8410-0.0000 i \
          -0.5708-0.0000 i & -0.0152+0.4524 i \
          endarray
          right) (lambda -1)^4+left(
          beginarraycc
          0.0305+0.1179 i & -2.1780+0.0000 i \
          0.5708-0.0000 i & 0.0305-0.1179 i \
          endarray
          right) (lambda -1)^5+Oleft((lambda -1)^6right)$







          share|improve this answer









          $endgroup$




















            4












            $begingroup$

            As far as I can tell, you did everything right in your second approach. Classically, Mathematica returns lists of rules as results of solving functions, but in this case, I find this tradition rather confusing and prefer to use ParametricNDSolveValue; it returns a ParametricFunction object that, when applied to a numerical parameter, returns a list of 4 InterpolatingFunction for your 4 functions.



            T[θ_] = T11[θ], T12[θ], T21[θ], T22[θ];
            A[θ_] = 0, E^(-I θ)/λ, 1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0;
            sys = T'[θ] == T[θ].A[θ];

            Tsol = ParametricNDSolveValue[sys, T11[0] == 1, T12[0] == 0,
            T21[0] == 0, T22[0] == 1,
            T11, T12, T21, T22,
            θ, 0, 2 Pi,
            λ
            ];


            In order to obtain the numerical values for all the solutions at θ = 2 Pi for a given parameter, say λ = 0.1, you may use Through:



            Through[Tsol[0.1][2. Pi]]



            -0.545795 + 1.00532 I, -1.43497 - 7.95125*10^-7 I, -0.215035 -
            2.80298*10^-8 I, -0.545795 - 1.00532 I




            In order to make that into a function, you may use



            f = λ [Function] Through[Tsol[λ][2. Pi]]





            share|improve this answer











            $endgroup$












            • $begingroup$
              Thanks for your answer. Only the last step differs from what I'd like to obtain. What I would like to see is a function depending on $lambda$, not the evaluation at a single point.
              $endgroup$
              – Edu
              yesterday


















            3












            $begingroup$

            For this case, you don't even need to write out the components of your matrix function:



            pf = ParametricNDSolveValue[t'[θ] == t[θ].0, Exp[-I θ]/λ,
            Exp[-I θ] (9 λ + 2 (λ - 1)^2
            (6 Cos[θ] + Cos[2 θ] + 6))/36, 0,
            t[0] == IdentityMatrix[2], t, θ, 0, 2 π, λ,
            Method -> "StiffnessSwitching"];

            sol = pf[(3 + 4 I)/5];

            ParametricPlot[ReIm[Tr[sol[θ]]], θ, 0, 2 π]


            some curve



            ParametricPlot[ReIm[Det[sol[θ]]], θ, 0, 2 π]


            some other curve



            You can even make a plot where the parameter is varying:



            Plot[Re[Tr[pf[Exp[I ϕ]][2 π]]], ϕ, 0, 2 π]


            yet another curve






            share|improve this answer











            $endgroup$












            • $begingroup$
              Thanks for your answer. Could I see the solution as a function of $lambda$ instead? I suppose is something possible to do...
              $endgroup$
              – Edu
              yesterday










            • $begingroup$
              That is what the third plot is; I let $lambda=exp(ivarphi)$ (quote "with $lambda$ a free parameter in the unit circle") and plotted the real part of the trace of the matrix.
              $endgroup$
              – J. M. is slightly pensive
              yesterday











            • $begingroup$
              Sure, but I'd like to manipulate it further. Not just see its plot. See my point?
              $endgroup$
              – Edu
              yesterday










            • $begingroup$
              You make no mention of what kind of manipulations you like to do in your question, so no, I do not see.
              $endgroup$
              – J. M. is slightly pensive
              yesterday











            • $begingroup$
              For example, can I get the solution as a function of $lambda$? Or as a series expansion of powers of $lambda$?
              $endgroup$
              – Edu
              yesterday











            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "387"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194251%2fsolving-system-of-odes-with-extra-parameter%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Here is how to obtain the series expansion of the matrix components. First, using a tweaked version (solving for t[2π] instead of t) of JM's formulation:



            A[θ_] = 
            0, E^(-I θ)/λ,
            1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0
            ;

            pf = ParametricNDSolveValue[

            t'[θ] == t[θ].A[θ], t[0] == IdentityMatrix[2]
            ,
            t[2π],
            θ, 0, 2π,
            λ
            ];


            Then, pf will return the matrix value at $theta = 2 pi$. For example:



            pf[1]
            pf[Exp[I Pi/3]]



            1. + 3.62818*10^-9 I,
            6.82646*10^-8 - 5.73536*10^-9 I, 1.70661*10^-8 - 1.43384*10^-9 I,
            1. + 3.62818*10^-9 I



            0.985595 + 1.17074 I, -0.425572 + 0.737112 I, -0.788363 - 1.36549 I,
            0.985595 - 1.17074 I




            Finding the series expansion is simple:



            DecimalForm[Series[pf[λ], λ, 1, 5], 4,4] //TeXForm



            $left(
            beginarraycc
            1.0000 & 6.2830 \
            1.5710 & 1.0000 \
            endarray
            right)+left(
            beginarraycc
            0.0000+0.0000 i & -6.2830+0.0000 i \
            1.5710+0.0000 i & 0.0000+0.0000 i \
            endarray
            right) (lambda -1)+left(
            beginarraycc
            0.0000-0.7869 i & 0.6691-0.0000 i \
            0.8799+0.0000 i & -0.0000+0.7869 i \
            endarray
            right) (lambda -1)^2+left(
            beginarraycc
            0.0000+0.7869 i & -1.3380+0.0000 i \
            0.0000+0.0000 i & 0.0000-0.7869 i \
            endarray
            right) (lambda -1)^3+left(
            beginarraycc
            -0.0152-0.4524 i & 1.8410-0.0000 i \
            -0.5708-0.0000 i & -0.0152+0.4524 i \
            endarray
            right) (lambda -1)^4+left(
            beginarraycc
            0.0305+0.1179 i & -2.1780+0.0000 i \
            0.5708-0.0000 i & 0.0305-0.1179 i \
            endarray
            right) (lambda -1)^5+Oleft((lambda -1)^6right)$







            share|improve this answer









            $endgroup$

















              2












              $begingroup$

              Here is how to obtain the series expansion of the matrix components. First, using a tweaked version (solving for t[2π] instead of t) of JM's formulation:



              A[θ_] = 
              0, E^(-I θ)/λ,
              1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0
              ;

              pf = ParametricNDSolveValue[

              t'[θ] == t[θ].A[θ], t[0] == IdentityMatrix[2]
              ,
              t[2π],
              θ, 0, 2π,
              λ
              ];


              Then, pf will return the matrix value at $theta = 2 pi$. For example:



              pf[1]
              pf[Exp[I Pi/3]]



              1. + 3.62818*10^-9 I,
              6.82646*10^-8 - 5.73536*10^-9 I, 1.70661*10^-8 - 1.43384*10^-9 I,
              1. + 3.62818*10^-9 I



              0.985595 + 1.17074 I, -0.425572 + 0.737112 I, -0.788363 - 1.36549 I,
              0.985595 - 1.17074 I




              Finding the series expansion is simple:



              DecimalForm[Series[pf[λ], λ, 1, 5], 4,4] //TeXForm



              $left(
              beginarraycc
              1.0000 & 6.2830 \
              1.5710 & 1.0000 \
              endarray
              right)+left(
              beginarraycc
              0.0000+0.0000 i & -6.2830+0.0000 i \
              1.5710+0.0000 i & 0.0000+0.0000 i \
              endarray
              right) (lambda -1)+left(
              beginarraycc
              0.0000-0.7869 i & 0.6691-0.0000 i \
              0.8799+0.0000 i & -0.0000+0.7869 i \
              endarray
              right) (lambda -1)^2+left(
              beginarraycc
              0.0000+0.7869 i & -1.3380+0.0000 i \
              0.0000+0.0000 i & 0.0000-0.7869 i \
              endarray
              right) (lambda -1)^3+left(
              beginarraycc
              -0.0152-0.4524 i & 1.8410-0.0000 i \
              -0.5708-0.0000 i & -0.0152+0.4524 i \
              endarray
              right) (lambda -1)^4+left(
              beginarraycc
              0.0305+0.1179 i & -2.1780+0.0000 i \
              0.5708-0.0000 i & 0.0305-0.1179 i \
              endarray
              right) (lambda -1)^5+Oleft((lambda -1)^6right)$







              share|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                Here is how to obtain the series expansion of the matrix components. First, using a tweaked version (solving for t[2π] instead of t) of JM's formulation:



                A[θ_] = 
                0, E^(-I θ)/λ,
                1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0
                ;

                pf = ParametricNDSolveValue[

                t'[θ] == t[θ].A[θ], t[0] == IdentityMatrix[2]
                ,
                t[2π],
                θ, 0, 2π,
                λ
                ];


                Then, pf will return the matrix value at $theta = 2 pi$. For example:



                pf[1]
                pf[Exp[I Pi/3]]



                1. + 3.62818*10^-9 I,
                6.82646*10^-8 - 5.73536*10^-9 I, 1.70661*10^-8 - 1.43384*10^-9 I,
                1. + 3.62818*10^-9 I



                0.985595 + 1.17074 I, -0.425572 + 0.737112 I, -0.788363 - 1.36549 I,
                0.985595 - 1.17074 I




                Finding the series expansion is simple:



                DecimalForm[Series[pf[λ], λ, 1, 5], 4,4] //TeXForm



                $left(
                beginarraycc
                1.0000 & 6.2830 \
                1.5710 & 1.0000 \
                endarray
                right)+left(
                beginarraycc
                0.0000+0.0000 i & -6.2830+0.0000 i \
                1.5710+0.0000 i & 0.0000+0.0000 i \
                endarray
                right) (lambda -1)+left(
                beginarraycc
                0.0000-0.7869 i & 0.6691-0.0000 i \
                0.8799+0.0000 i & -0.0000+0.7869 i \
                endarray
                right) (lambda -1)^2+left(
                beginarraycc
                0.0000+0.7869 i & -1.3380+0.0000 i \
                0.0000+0.0000 i & 0.0000-0.7869 i \
                endarray
                right) (lambda -1)^3+left(
                beginarraycc
                -0.0152-0.4524 i & 1.8410-0.0000 i \
                -0.5708-0.0000 i & -0.0152+0.4524 i \
                endarray
                right) (lambda -1)^4+left(
                beginarraycc
                0.0305+0.1179 i & -2.1780+0.0000 i \
                0.5708-0.0000 i & 0.0305-0.1179 i \
                endarray
                right) (lambda -1)^5+Oleft((lambda -1)^6right)$







                share|improve this answer









                $endgroup$



                Here is how to obtain the series expansion of the matrix components. First, using a tweaked version (solving for t[2π] instead of t) of JM's formulation:



                A[θ_] = 
                0, E^(-I θ)/λ,
                1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0
                ;

                pf = ParametricNDSolveValue[

                t'[θ] == t[θ].A[θ], t[0] == IdentityMatrix[2]
                ,
                t[2π],
                θ, 0, 2π,
                λ
                ];


                Then, pf will return the matrix value at $theta = 2 pi$. For example:



                pf[1]
                pf[Exp[I Pi/3]]



                1. + 3.62818*10^-9 I,
                6.82646*10^-8 - 5.73536*10^-9 I, 1.70661*10^-8 - 1.43384*10^-9 I,
                1. + 3.62818*10^-9 I



                0.985595 + 1.17074 I, -0.425572 + 0.737112 I, -0.788363 - 1.36549 I,
                0.985595 - 1.17074 I




                Finding the series expansion is simple:



                DecimalForm[Series[pf[λ], λ, 1, 5], 4,4] //TeXForm



                $left(
                beginarraycc
                1.0000 & 6.2830 \
                1.5710 & 1.0000 \
                endarray
                right)+left(
                beginarraycc
                0.0000+0.0000 i & -6.2830+0.0000 i \
                1.5710+0.0000 i & 0.0000+0.0000 i \
                endarray
                right) (lambda -1)+left(
                beginarraycc
                0.0000-0.7869 i & 0.6691-0.0000 i \
                0.8799+0.0000 i & -0.0000+0.7869 i \
                endarray
                right) (lambda -1)^2+left(
                beginarraycc
                0.0000+0.7869 i & -1.3380+0.0000 i \
                0.0000+0.0000 i & 0.0000-0.7869 i \
                endarray
                right) (lambda -1)^3+left(
                beginarraycc
                -0.0152-0.4524 i & 1.8410-0.0000 i \
                -0.5708-0.0000 i & -0.0152+0.4524 i \
                endarray
                right) (lambda -1)^4+left(
                beginarraycc
                0.0305+0.1179 i & -2.1780+0.0000 i \
                0.5708-0.0000 i & 0.0305-0.1179 i \
                endarray
                right) (lambda -1)^5+Oleft((lambda -1)^6right)$








                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered yesterday









                Carl WollCarl Woll

                72.1k395186




                72.1k395186





















                    4












                    $begingroup$

                    As far as I can tell, you did everything right in your second approach. Classically, Mathematica returns lists of rules as results of solving functions, but in this case, I find this tradition rather confusing and prefer to use ParametricNDSolveValue; it returns a ParametricFunction object that, when applied to a numerical parameter, returns a list of 4 InterpolatingFunction for your 4 functions.



                    T[θ_] = T11[θ], T12[θ], T21[θ], T22[θ];
                    A[θ_] = 0, E^(-I θ)/λ, 1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0;
                    sys = T'[θ] == T[θ].A[θ];

                    Tsol = ParametricNDSolveValue[sys, T11[0] == 1, T12[0] == 0,
                    T21[0] == 0, T22[0] == 1,
                    T11, T12, T21, T22,
                    θ, 0, 2 Pi,
                    λ
                    ];


                    In order to obtain the numerical values for all the solutions at θ = 2 Pi for a given parameter, say λ = 0.1, you may use Through:



                    Through[Tsol[0.1][2. Pi]]



                    -0.545795 + 1.00532 I, -1.43497 - 7.95125*10^-7 I, -0.215035 -
                    2.80298*10^-8 I, -0.545795 - 1.00532 I




                    In order to make that into a function, you may use



                    f = λ [Function] Through[Tsol[λ][2. Pi]]





                    share|improve this answer











                    $endgroup$












                    • $begingroup$
                      Thanks for your answer. Only the last step differs from what I'd like to obtain. What I would like to see is a function depending on $lambda$, not the evaluation at a single point.
                      $endgroup$
                      – Edu
                      yesterday















                    4












                    $begingroup$

                    As far as I can tell, you did everything right in your second approach. Classically, Mathematica returns lists of rules as results of solving functions, but in this case, I find this tradition rather confusing and prefer to use ParametricNDSolveValue; it returns a ParametricFunction object that, when applied to a numerical parameter, returns a list of 4 InterpolatingFunction for your 4 functions.



                    T[θ_] = T11[θ], T12[θ], T21[θ], T22[θ];
                    A[θ_] = 0, E^(-I θ)/λ, 1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0;
                    sys = T'[θ] == T[θ].A[θ];

                    Tsol = ParametricNDSolveValue[sys, T11[0] == 1, T12[0] == 0,
                    T21[0] == 0, T22[0] == 1,
                    T11, T12, T21, T22,
                    θ, 0, 2 Pi,
                    λ
                    ];


                    In order to obtain the numerical values for all the solutions at θ = 2 Pi for a given parameter, say λ = 0.1, you may use Through:



                    Through[Tsol[0.1][2. Pi]]



                    -0.545795 + 1.00532 I, -1.43497 - 7.95125*10^-7 I, -0.215035 -
                    2.80298*10^-8 I, -0.545795 - 1.00532 I




                    In order to make that into a function, you may use



                    f = λ [Function] Through[Tsol[λ][2. Pi]]





                    share|improve this answer











                    $endgroup$












                    • $begingroup$
                      Thanks for your answer. Only the last step differs from what I'd like to obtain. What I would like to see is a function depending on $lambda$, not the evaluation at a single point.
                      $endgroup$
                      – Edu
                      yesterday













                    4












                    4








                    4





                    $begingroup$

                    As far as I can tell, you did everything right in your second approach. Classically, Mathematica returns lists of rules as results of solving functions, but in this case, I find this tradition rather confusing and prefer to use ParametricNDSolveValue; it returns a ParametricFunction object that, when applied to a numerical parameter, returns a list of 4 InterpolatingFunction for your 4 functions.



                    T[θ_] = T11[θ], T12[θ], T21[θ], T22[θ];
                    A[θ_] = 0, E^(-I θ)/λ, 1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0;
                    sys = T'[θ] == T[θ].A[θ];

                    Tsol = ParametricNDSolveValue[sys, T11[0] == 1, T12[0] == 0,
                    T21[0] == 0, T22[0] == 1,
                    T11, T12, T21, T22,
                    θ, 0, 2 Pi,
                    λ
                    ];


                    In order to obtain the numerical values for all the solutions at θ = 2 Pi for a given parameter, say λ = 0.1, you may use Through:



                    Through[Tsol[0.1][2. Pi]]



                    -0.545795 + 1.00532 I, -1.43497 - 7.95125*10^-7 I, -0.215035 -
                    2.80298*10^-8 I, -0.545795 - 1.00532 I




                    In order to make that into a function, you may use



                    f = λ [Function] Through[Tsol[λ][2. Pi]]





                    share|improve this answer











                    $endgroup$



                    As far as I can tell, you did everything right in your second approach. Classically, Mathematica returns lists of rules as results of solving functions, but in this case, I find this tradition rather confusing and prefer to use ParametricNDSolveValue; it returns a ParametricFunction object that, when applied to a numerical parameter, returns a list of 4 InterpolatingFunction for your 4 functions.



                    T[θ_] = T11[θ], T12[θ], T21[θ], T22[θ];
                    A[θ_] = 0, E^(-I θ)/λ, 1/36 E^(-I θ) (9 λ + 2 (-1 + λ)^2 (6 + 6 Cos[θ] + Cos[2 θ])), 0;
                    sys = T'[θ] == T[θ].A[θ];

                    Tsol = ParametricNDSolveValue[sys, T11[0] == 1, T12[0] == 0,
                    T21[0] == 0, T22[0] == 1,
                    T11, T12, T21, T22,
                    θ, 0, 2 Pi,
                    λ
                    ];


                    In order to obtain the numerical values for all the solutions at θ = 2 Pi for a given parameter, say λ = 0.1, you may use Through:



                    Through[Tsol[0.1][2. Pi]]



                    -0.545795 + 1.00532 I, -1.43497 - 7.95125*10^-7 I, -0.215035 -
                    2.80298*10^-8 I, -0.545795 - 1.00532 I




                    In order to make that into a function, you may use



                    f = λ [Function] Through[Tsol[λ][2. Pi]]






                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited yesterday

























                    answered yesterday









                    Henrik SchumacherHenrik Schumacher

                    58.7k581162




                    58.7k581162











                    • $begingroup$
                      Thanks for your answer. Only the last step differs from what I'd like to obtain. What I would like to see is a function depending on $lambda$, not the evaluation at a single point.
                      $endgroup$
                      – Edu
                      yesterday
















                    • $begingroup$
                      Thanks for your answer. Only the last step differs from what I'd like to obtain. What I would like to see is a function depending on $lambda$, not the evaluation at a single point.
                      $endgroup$
                      – Edu
                      yesterday















                    $begingroup$
                    Thanks for your answer. Only the last step differs from what I'd like to obtain. What I would like to see is a function depending on $lambda$, not the evaluation at a single point.
                    $endgroup$
                    – Edu
                    yesterday




                    $begingroup$
                    Thanks for your answer. Only the last step differs from what I'd like to obtain. What I would like to see is a function depending on $lambda$, not the evaluation at a single point.
                    $endgroup$
                    – Edu
                    yesterday











                    3












                    $begingroup$

                    For this case, you don't even need to write out the components of your matrix function:



                    pf = ParametricNDSolveValue[t'[θ] == t[θ].0, Exp[-I θ]/λ,
                    Exp[-I θ] (9 λ + 2 (λ - 1)^2
                    (6 Cos[θ] + Cos[2 θ] + 6))/36, 0,
                    t[0] == IdentityMatrix[2], t, θ, 0, 2 π, λ,
                    Method -> "StiffnessSwitching"];

                    sol = pf[(3 + 4 I)/5];

                    ParametricPlot[ReIm[Tr[sol[θ]]], θ, 0, 2 π]


                    some curve



                    ParametricPlot[ReIm[Det[sol[θ]]], θ, 0, 2 π]


                    some other curve



                    You can even make a plot where the parameter is varying:



                    Plot[Re[Tr[pf[Exp[I ϕ]][2 π]]], ϕ, 0, 2 π]


                    yet another curve






                    share|improve this answer











                    $endgroup$












                    • $begingroup$
                      Thanks for your answer. Could I see the solution as a function of $lambda$ instead? I suppose is something possible to do...
                      $endgroup$
                      – Edu
                      yesterday










                    • $begingroup$
                      That is what the third plot is; I let $lambda=exp(ivarphi)$ (quote "with $lambda$ a free parameter in the unit circle") and plotted the real part of the trace of the matrix.
                      $endgroup$
                      – J. M. is slightly pensive
                      yesterday











                    • $begingroup$
                      Sure, but I'd like to manipulate it further. Not just see its plot. See my point?
                      $endgroup$
                      – Edu
                      yesterday










                    • $begingroup$
                      You make no mention of what kind of manipulations you like to do in your question, so no, I do not see.
                      $endgroup$
                      – J. M. is slightly pensive
                      yesterday











                    • $begingroup$
                      For example, can I get the solution as a function of $lambda$? Or as a series expansion of powers of $lambda$?
                      $endgroup$
                      – Edu
                      yesterday















                    3












                    $begingroup$

                    For this case, you don't even need to write out the components of your matrix function:



                    pf = ParametricNDSolveValue[t'[θ] == t[θ].0, Exp[-I θ]/λ,
                    Exp[-I θ] (9 λ + 2 (λ - 1)^2
                    (6 Cos[θ] + Cos[2 θ] + 6))/36, 0,
                    t[0] == IdentityMatrix[2], t, θ, 0, 2 π, λ,
                    Method -> "StiffnessSwitching"];

                    sol = pf[(3 + 4 I)/5];

                    ParametricPlot[ReIm[Tr[sol[θ]]], θ, 0, 2 π]


                    some curve



                    ParametricPlot[ReIm[Det[sol[θ]]], θ, 0, 2 π]


                    some other curve



                    You can even make a plot where the parameter is varying:



                    Plot[Re[Tr[pf[Exp[I ϕ]][2 π]]], ϕ, 0, 2 π]


                    yet another curve






                    share|improve this answer











                    $endgroup$












                    • $begingroup$
                      Thanks for your answer. Could I see the solution as a function of $lambda$ instead? I suppose is something possible to do...
                      $endgroup$
                      – Edu
                      yesterday










                    • $begingroup$
                      That is what the third plot is; I let $lambda=exp(ivarphi)$ (quote "with $lambda$ a free parameter in the unit circle") and plotted the real part of the trace of the matrix.
                      $endgroup$
                      – J. M. is slightly pensive
                      yesterday











                    • $begingroup$
                      Sure, but I'd like to manipulate it further. Not just see its plot. See my point?
                      $endgroup$
                      – Edu
                      yesterday










                    • $begingroup$
                      You make no mention of what kind of manipulations you like to do in your question, so no, I do not see.
                      $endgroup$
                      – J. M. is slightly pensive
                      yesterday











                    • $begingroup$
                      For example, can I get the solution as a function of $lambda$? Or as a series expansion of powers of $lambda$?
                      $endgroup$
                      – Edu
                      yesterday













                    3












                    3








                    3





                    $begingroup$

                    For this case, you don't even need to write out the components of your matrix function:



                    pf = ParametricNDSolveValue[t'[θ] == t[θ].0, Exp[-I θ]/λ,
                    Exp[-I θ] (9 λ + 2 (λ - 1)^2
                    (6 Cos[θ] + Cos[2 θ] + 6))/36, 0,
                    t[0] == IdentityMatrix[2], t, θ, 0, 2 π, λ,
                    Method -> "StiffnessSwitching"];

                    sol = pf[(3 + 4 I)/5];

                    ParametricPlot[ReIm[Tr[sol[θ]]], θ, 0, 2 π]


                    some curve



                    ParametricPlot[ReIm[Det[sol[θ]]], θ, 0, 2 π]


                    some other curve



                    You can even make a plot where the parameter is varying:



                    Plot[Re[Tr[pf[Exp[I ϕ]][2 π]]], ϕ, 0, 2 π]


                    yet another curve






                    share|improve this answer











                    $endgroup$



                    For this case, you don't even need to write out the components of your matrix function:



                    pf = ParametricNDSolveValue[t'[θ] == t[θ].0, Exp[-I θ]/λ,
                    Exp[-I θ] (9 λ + 2 (λ - 1)^2
                    (6 Cos[θ] + Cos[2 θ] + 6))/36, 0,
                    t[0] == IdentityMatrix[2], t, θ, 0, 2 π, λ,
                    Method -> "StiffnessSwitching"];

                    sol = pf[(3 + 4 I)/5];

                    ParametricPlot[ReIm[Tr[sol[θ]]], θ, 0, 2 π]


                    some curve



                    ParametricPlot[ReIm[Det[sol[θ]]], θ, 0, 2 π]


                    some other curve



                    You can even make a plot where the parameter is varying:



                    Plot[Re[Tr[pf[Exp[I ϕ]][2 π]]], ϕ, 0, 2 π]


                    yet another curve







                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    answered yesterday


























                    community wiki





                    J. M. is slightly pensive












                    • $begingroup$
                      Thanks for your answer. Could I see the solution as a function of $lambda$ instead? I suppose is something possible to do...
                      $endgroup$
                      – Edu
                      yesterday










                    • $begingroup$
                      That is what the third plot is; I let $lambda=exp(ivarphi)$ (quote "with $lambda$ a free parameter in the unit circle") and plotted the real part of the trace of the matrix.
                      $endgroup$
                      – J. M. is slightly pensive
                      yesterday











                    • $begingroup$
                      Sure, but I'd like to manipulate it further. Not just see its plot. See my point?
                      $endgroup$
                      – Edu
                      yesterday










                    • $begingroup$
                      You make no mention of what kind of manipulations you like to do in your question, so no, I do not see.
                      $endgroup$
                      – J. M. is slightly pensive
                      yesterday











                    • $begingroup$
                      For example, can I get the solution as a function of $lambda$? Or as a series expansion of powers of $lambda$?
                      $endgroup$
                      – Edu
                      yesterday
















                    • $begingroup$
                      Thanks for your answer. Could I see the solution as a function of $lambda$ instead? I suppose is something possible to do...
                      $endgroup$
                      – Edu
                      yesterday










                    • $begingroup$
                      That is what the third plot is; I let $lambda=exp(ivarphi)$ (quote "with $lambda$ a free parameter in the unit circle") and plotted the real part of the trace of the matrix.
                      $endgroup$
                      – J. M. is slightly pensive
                      yesterday











                    • $begingroup$
                      Sure, but I'd like to manipulate it further. Not just see its plot. See my point?
                      $endgroup$
                      – Edu
                      yesterday










                    • $begingroup$
                      You make no mention of what kind of manipulations you like to do in your question, so no, I do not see.
                      $endgroup$
                      – J. M. is slightly pensive
                      yesterday











                    • $begingroup$
                      For example, can I get the solution as a function of $lambda$? Or as a series expansion of powers of $lambda$?
                      $endgroup$
                      – Edu
                      yesterday















                    $begingroup$
                    Thanks for your answer. Could I see the solution as a function of $lambda$ instead? I suppose is something possible to do...
                    $endgroup$
                    – Edu
                    yesterday




                    $begingroup$
                    Thanks for your answer. Could I see the solution as a function of $lambda$ instead? I suppose is something possible to do...
                    $endgroup$
                    – Edu
                    yesterday












                    $begingroup$
                    That is what the third plot is; I let $lambda=exp(ivarphi)$ (quote "with $lambda$ a free parameter in the unit circle") and plotted the real part of the trace of the matrix.
                    $endgroup$
                    – J. M. is slightly pensive
                    yesterday





                    $begingroup$
                    That is what the third plot is; I let $lambda=exp(ivarphi)$ (quote "with $lambda$ a free parameter in the unit circle") and plotted the real part of the trace of the matrix.
                    $endgroup$
                    – J. M. is slightly pensive
                    yesterday













                    $begingroup$
                    Sure, but I'd like to manipulate it further. Not just see its plot. See my point?
                    $endgroup$
                    – Edu
                    yesterday




                    $begingroup$
                    Sure, but I'd like to manipulate it further. Not just see its plot. See my point?
                    $endgroup$
                    – Edu
                    yesterday












                    $begingroup$
                    You make no mention of what kind of manipulations you like to do in your question, so no, I do not see.
                    $endgroup$
                    – J. M. is slightly pensive
                    yesterday





                    $begingroup$
                    You make no mention of what kind of manipulations you like to do in your question, so no, I do not see.
                    $endgroup$
                    – J. M. is slightly pensive
                    yesterday













                    $begingroup$
                    For example, can I get the solution as a function of $lambda$? Or as a series expansion of powers of $lambda$?
                    $endgroup$
                    – Edu
                    yesterday




                    $begingroup$
                    For example, can I get the solution as a function of $lambda$? Or as a series expansion of powers of $lambda$?
                    $endgroup$
                    – Edu
                    yesterday

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194251%2fsolving-system-of-odes-with-extra-parameter%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                    Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                    Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020