A reference to a well-known characterization of scattered compact spacesIs there a co-Hahn-Mazurkiewicz theorem for line-filling spaces?What spaces have well known horofunctions?Ring of continuous functions, reference request.Automatic continuity of the inverse mapreference for “X compact <=> C_b(X) separable” (X metric space)Tietze's extension theorem for compact subspacescontinuous images of open intervalsWhich compact topological spaces are homeomorphic to their ultrapower?Topology on $mathcalC(X,Y)$ to work with homotopyWhich compacta contain copies of Cantor cubes?

A reference to a well-known characterization of scattered compact spaces


Is there a co-Hahn-Mazurkiewicz theorem for line-filling spaces?What spaces have well known horofunctions?Ring of continuous functions, reference request.Automatic continuity of the inverse mapreference for “X compact <=> C_b(X) separable” (X metric space)Tietze's extension theorem for compact subspacescontinuous images of open intervalsWhich compact topological spaces are homeomorphic to their ultrapower?Topology on $mathcalC(X,Y)$ to work with homotopyWhich compacta contain copies of Cantor cubes?













8












$begingroup$


It is well-known that a compact Hausdorff $X$ space is scattered if and only if admits no continuous maps onto the unit interval $[0,1]$.



Surprisingly, but I cannot find a good reference to this well-known fact (desirably some textbook).



In the survey paper "Scattered spaces" in Encyclopedia of General Topology this fact is not mentioned, unfortunately.










share|cite|improve this question











$endgroup$
















    8












    $begingroup$


    It is well-known that a compact Hausdorff $X$ space is scattered if and only if admits no continuous maps onto the unit interval $[0,1]$.



    Surprisingly, but I cannot find a good reference to this well-known fact (desirably some textbook).



    In the survey paper "Scattered spaces" in Encyclopedia of General Topology this fact is not mentioned, unfortunately.










    share|cite|improve this question











    $endgroup$














      8












      8








      8


      3



      $begingroup$


      It is well-known that a compact Hausdorff $X$ space is scattered if and only if admits no continuous maps onto the unit interval $[0,1]$.



      Surprisingly, but I cannot find a good reference to this well-known fact (desirably some textbook).



      In the survey paper "Scattered spaces" in Encyclopedia of General Topology this fact is not mentioned, unfortunately.










      share|cite|improve this question











      $endgroup$




      It is well-known that a compact Hausdorff $X$ space is scattered if and only if admits no continuous maps onto the unit interval $[0,1]$.



      Surprisingly, but I cannot find a good reference to this well-known fact (desirably some textbook).



      In the survey paper "Scattered spaces" in Encyclopedia of General Topology this fact is not mentioned, unfortunately.







      reference-request gn.general-topology






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 4 at 13:55







      Taras Banakh

















      asked Apr 4 at 9:52









      Taras BanakhTaras Banakh

      17.4k13496




      17.4k13496




















          2 Answers
          2






          active

          oldest

          votes


















          13












          $begingroup$

          The proof in the direction that there is no continuous surjection from a compact scattered $X$ onto $[0,1]$ may be found here (Theorem 1):



          W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42.



          And the full characterisation may be found in (Theorem 8.5.4, p. 148):



          Z. Semadeni, Banach spaces of continuous functions, vol. 1, PWN - Polish Scientific Publishers, Warsaw 1971.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Link to Rudin's article (unrestricted access): ams.org/journals/proc/1957-008-01/S0002-9939-1957-0085475-7/…
            $endgroup$
            – YCor
            Apr 4 at 12:23











          • $begingroup$
            +1 for Semadeni..
            $endgroup$
            – Henno Brandsma
            Apr 4 at 16:43


















          8












          $begingroup$

          I'm not properly answering since you're asking for a reference and I don't know any; however here's a hopefully reasonably concise proof.



          First implication:




          (1) Let $X,Y$ be compact Hausdorff topological spaces, such that there $X$ is scattered and such that there exists a continuous surjective map $Xto Y$. Then $Y$ is scattered.




          Proof: otherwise, we can reduce to the case when $Y$ is perfect (nonempty); let $f$ be the map. By compactness, let $Z$ be a minimal compact subset of $X$ on which $f$ is surjective. So $Z$ has an isolated point $z$, and since $Y$ is perfect, $f$ is still surjective on $Zsmallsetminusz$, contradiction.



          Reverse implication:




          (2) Let $X$ be compact Hausdorff and not scattered. Then there exists a continuous surjective map $Xto [0,1]$.




          Proof. If $X$ is not totally disconnected, choose $xneq x'$ in the same connected component and directly apply Urysohn's lemma (which ensures the existence of a continuous map $Xto [0,1]$ mapping $x$ to $0$ and $x'$ to 1; connectedness ensures surjectivity.



          Otherwise, suppose that $X$ is totally disconnected and non-scattered; in this case it's enough to prove that $X$ has a continuous surjection onto the Cantor set. By Stone duality, it's enough to embed a free BA of countable rank in the Boolean algebra of $X$. Since we can lift free BA's, we can assume that $X$ is perfect (nonempty, by assumption). In this case, it's immediate by an induction to produce a countable non-atomic subalgebra.




          Edit: now Damian Sobota has provided a complete reference. Actually the above proof of (1) is the same argument as Rudin's, which is the same as the one given in Semadeni's book. For (2), the dichotomy between the totally disconnected case and the other case also appears in Semadeni's proof; my proof is essentially the same as Semadeni's, except that I used a formulation in terms of Boolean algebras while Semadeni's one is directly formulated in terms of subdivisions of clopen subsets.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you for the proof, but I am writing a paper and would like to add a reference (since this fact is well-known and in many papers it is used without references, in spite of the fact that it is not entirely trivial).
            $endgroup$
            – Taras Banakh
            Apr 4 at 10:22











          • $begingroup$
            Yes, I understood your request...!
            $endgroup$
            – YCor
            Apr 4 at 10:22











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327124%2fa-reference-to-a-well-known-characterization-of-scattered-compact-spaces%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          13












          $begingroup$

          The proof in the direction that there is no continuous surjection from a compact scattered $X$ onto $[0,1]$ may be found here (Theorem 1):



          W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42.



          And the full characterisation may be found in (Theorem 8.5.4, p. 148):



          Z. Semadeni, Banach spaces of continuous functions, vol. 1, PWN - Polish Scientific Publishers, Warsaw 1971.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Link to Rudin's article (unrestricted access): ams.org/journals/proc/1957-008-01/S0002-9939-1957-0085475-7/…
            $endgroup$
            – YCor
            Apr 4 at 12:23











          • $begingroup$
            +1 for Semadeni..
            $endgroup$
            – Henno Brandsma
            Apr 4 at 16:43















          13












          $begingroup$

          The proof in the direction that there is no continuous surjection from a compact scattered $X$ onto $[0,1]$ may be found here (Theorem 1):



          W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42.



          And the full characterisation may be found in (Theorem 8.5.4, p. 148):



          Z. Semadeni, Banach spaces of continuous functions, vol. 1, PWN - Polish Scientific Publishers, Warsaw 1971.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Link to Rudin's article (unrestricted access): ams.org/journals/proc/1957-008-01/S0002-9939-1957-0085475-7/…
            $endgroup$
            – YCor
            Apr 4 at 12:23











          • $begingroup$
            +1 for Semadeni..
            $endgroup$
            – Henno Brandsma
            Apr 4 at 16:43













          13












          13








          13





          $begingroup$

          The proof in the direction that there is no continuous surjection from a compact scattered $X$ onto $[0,1]$ may be found here (Theorem 1):



          W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42.



          And the full characterisation may be found in (Theorem 8.5.4, p. 148):



          Z. Semadeni, Banach spaces of continuous functions, vol. 1, PWN - Polish Scientific Publishers, Warsaw 1971.






          share|cite|improve this answer











          $endgroup$



          The proof in the direction that there is no continuous surjection from a compact scattered $X$ onto $[0,1]$ may be found here (Theorem 1):



          W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42.



          And the full characterisation may be found in (Theorem 8.5.4, p. 148):



          Z. Semadeni, Banach spaces of continuous functions, vol. 1, PWN - Polish Scientific Publishers, Warsaw 1971.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Apr 4 at 13:37

























          answered Apr 4 at 12:19









          Damian SobotaDamian Sobota

          523213




          523213







          • 1




            $begingroup$
            Link to Rudin's article (unrestricted access): ams.org/journals/proc/1957-008-01/S0002-9939-1957-0085475-7/…
            $endgroup$
            – YCor
            Apr 4 at 12:23











          • $begingroup$
            +1 for Semadeni..
            $endgroup$
            – Henno Brandsma
            Apr 4 at 16:43












          • 1




            $begingroup$
            Link to Rudin's article (unrestricted access): ams.org/journals/proc/1957-008-01/S0002-9939-1957-0085475-7/…
            $endgroup$
            – YCor
            Apr 4 at 12:23











          • $begingroup$
            +1 for Semadeni..
            $endgroup$
            – Henno Brandsma
            Apr 4 at 16:43







          1




          1




          $begingroup$
          Link to Rudin's article (unrestricted access): ams.org/journals/proc/1957-008-01/S0002-9939-1957-0085475-7/…
          $endgroup$
          – YCor
          Apr 4 at 12:23





          $begingroup$
          Link to Rudin's article (unrestricted access): ams.org/journals/proc/1957-008-01/S0002-9939-1957-0085475-7/…
          $endgroup$
          – YCor
          Apr 4 at 12:23













          $begingroup$
          +1 for Semadeni..
          $endgroup$
          – Henno Brandsma
          Apr 4 at 16:43




          $begingroup$
          +1 for Semadeni..
          $endgroup$
          – Henno Brandsma
          Apr 4 at 16:43











          8












          $begingroup$

          I'm not properly answering since you're asking for a reference and I don't know any; however here's a hopefully reasonably concise proof.



          First implication:




          (1) Let $X,Y$ be compact Hausdorff topological spaces, such that there $X$ is scattered and such that there exists a continuous surjective map $Xto Y$. Then $Y$ is scattered.




          Proof: otherwise, we can reduce to the case when $Y$ is perfect (nonempty); let $f$ be the map. By compactness, let $Z$ be a minimal compact subset of $X$ on which $f$ is surjective. So $Z$ has an isolated point $z$, and since $Y$ is perfect, $f$ is still surjective on $Zsmallsetminusz$, contradiction.



          Reverse implication:




          (2) Let $X$ be compact Hausdorff and not scattered. Then there exists a continuous surjective map $Xto [0,1]$.




          Proof. If $X$ is not totally disconnected, choose $xneq x'$ in the same connected component and directly apply Urysohn's lemma (which ensures the existence of a continuous map $Xto [0,1]$ mapping $x$ to $0$ and $x'$ to 1; connectedness ensures surjectivity.



          Otherwise, suppose that $X$ is totally disconnected and non-scattered; in this case it's enough to prove that $X$ has a continuous surjection onto the Cantor set. By Stone duality, it's enough to embed a free BA of countable rank in the Boolean algebra of $X$. Since we can lift free BA's, we can assume that $X$ is perfect (nonempty, by assumption). In this case, it's immediate by an induction to produce a countable non-atomic subalgebra.




          Edit: now Damian Sobota has provided a complete reference. Actually the above proof of (1) is the same argument as Rudin's, which is the same as the one given in Semadeni's book. For (2), the dichotomy between the totally disconnected case and the other case also appears in Semadeni's proof; my proof is essentially the same as Semadeni's, except that I used a formulation in terms of Boolean algebras while Semadeni's one is directly formulated in terms of subdivisions of clopen subsets.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you for the proof, but I am writing a paper and would like to add a reference (since this fact is well-known and in many papers it is used without references, in spite of the fact that it is not entirely trivial).
            $endgroup$
            – Taras Banakh
            Apr 4 at 10:22











          • $begingroup$
            Yes, I understood your request...!
            $endgroup$
            – YCor
            Apr 4 at 10:22















          8












          $begingroup$

          I'm not properly answering since you're asking for a reference and I don't know any; however here's a hopefully reasonably concise proof.



          First implication:




          (1) Let $X,Y$ be compact Hausdorff topological spaces, such that there $X$ is scattered and such that there exists a continuous surjective map $Xto Y$. Then $Y$ is scattered.




          Proof: otherwise, we can reduce to the case when $Y$ is perfect (nonempty); let $f$ be the map. By compactness, let $Z$ be a minimal compact subset of $X$ on which $f$ is surjective. So $Z$ has an isolated point $z$, and since $Y$ is perfect, $f$ is still surjective on $Zsmallsetminusz$, contradiction.



          Reverse implication:




          (2) Let $X$ be compact Hausdorff and not scattered. Then there exists a continuous surjective map $Xto [0,1]$.




          Proof. If $X$ is not totally disconnected, choose $xneq x'$ in the same connected component and directly apply Urysohn's lemma (which ensures the existence of a continuous map $Xto [0,1]$ mapping $x$ to $0$ and $x'$ to 1; connectedness ensures surjectivity.



          Otherwise, suppose that $X$ is totally disconnected and non-scattered; in this case it's enough to prove that $X$ has a continuous surjection onto the Cantor set. By Stone duality, it's enough to embed a free BA of countable rank in the Boolean algebra of $X$. Since we can lift free BA's, we can assume that $X$ is perfect (nonempty, by assumption). In this case, it's immediate by an induction to produce a countable non-atomic subalgebra.




          Edit: now Damian Sobota has provided a complete reference. Actually the above proof of (1) is the same argument as Rudin's, which is the same as the one given in Semadeni's book. For (2), the dichotomy between the totally disconnected case and the other case also appears in Semadeni's proof; my proof is essentially the same as Semadeni's, except that I used a formulation in terms of Boolean algebras while Semadeni's one is directly formulated in terms of subdivisions of clopen subsets.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thank you for the proof, but I am writing a paper and would like to add a reference (since this fact is well-known and in many papers it is used without references, in spite of the fact that it is not entirely trivial).
            $endgroup$
            – Taras Banakh
            Apr 4 at 10:22











          • $begingroup$
            Yes, I understood your request...!
            $endgroup$
            – YCor
            Apr 4 at 10:22













          8












          8








          8





          $begingroup$

          I'm not properly answering since you're asking for a reference and I don't know any; however here's a hopefully reasonably concise proof.



          First implication:




          (1) Let $X,Y$ be compact Hausdorff topological spaces, such that there $X$ is scattered and such that there exists a continuous surjective map $Xto Y$. Then $Y$ is scattered.




          Proof: otherwise, we can reduce to the case when $Y$ is perfect (nonempty); let $f$ be the map. By compactness, let $Z$ be a minimal compact subset of $X$ on which $f$ is surjective. So $Z$ has an isolated point $z$, and since $Y$ is perfect, $f$ is still surjective on $Zsmallsetminusz$, contradiction.



          Reverse implication:




          (2) Let $X$ be compact Hausdorff and not scattered. Then there exists a continuous surjective map $Xto [0,1]$.




          Proof. If $X$ is not totally disconnected, choose $xneq x'$ in the same connected component and directly apply Urysohn's lemma (which ensures the existence of a continuous map $Xto [0,1]$ mapping $x$ to $0$ and $x'$ to 1; connectedness ensures surjectivity.



          Otherwise, suppose that $X$ is totally disconnected and non-scattered; in this case it's enough to prove that $X$ has a continuous surjection onto the Cantor set. By Stone duality, it's enough to embed a free BA of countable rank in the Boolean algebra of $X$. Since we can lift free BA's, we can assume that $X$ is perfect (nonempty, by assumption). In this case, it's immediate by an induction to produce a countable non-atomic subalgebra.




          Edit: now Damian Sobota has provided a complete reference. Actually the above proof of (1) is the same argument as Rudin's, which is the same as the one given in Semadeni's book. For (2), the dichotomy between the totally disconnected case and the other case also appears in Semadeni's proof; my proof is essentially the same as Semadeni's, except that I used a formulation in terms of Boolean algebras while Semadeni's one is directly formulated in terms of subdivisions of clopen subsets.






          share|cite|improve this answer











          $endgroup$



          I'm not properly answering since you're asking for a reference and I don't know any; however here's a hopefully reasonably concise proof.



          First implication:




          (1) Let $X,Y$ be compact Hausdorff topological spaces, such that there $X$ is scattered and such that there exists a continuous surjective map $Xto Y$. Then $Y$ is scattered.




          Proof: otherwise, we can reduce to the case when $Y$ is perfect (nonempty); let $f$ be the map. By compactness, let $Z$ be a minimal compact subset of $X$ on which $f$ is surjective. So $Z$ has an isolated point $z$, and since $Y$ is perfect, $f$ is still surjective on $Zsmallsetminusz$, contradiction.



          Reverse implication:




          (2) Let $X$ be compact Hausdorff and not scattered. Then there exists a continuous surjective map $Xto [0,1]$.




          Proof. If $X$ is not totally disconnected, choose $xneq x'$ in the same connected component and directly apply Urysohn's lemma (which ensures the existence of a continuous map $Xto [0,1]$ mapping $x$ to $0$ and $x'$ to 1; connectedness ensures surjectivity.



          Otherwise, suppose that $X$ is totally disconnected and non-scattered; in this case it's enough to prove that $X$ has a continuous surjection onto the Cantor set. By Stone duality, it's enough to embed a free BA of countable rank in the Boolean algebra of $X$. Since we can lift free BA's, we can assume that $X$ is perfect (nonempty, by assumption). In this case, it's immediate by an induction to produce a countable non-atomic subalgebra.




          Edit: now Damian Sobota has provided a complete reference. Actually the above proof of (1) is the same argument as Rudin's, which is the same as the one given in Semadeni's book. For (2), the dichotomy between the totally disconnected case and the other case also appears in Semadeni's proof; my proof is essentially the same as Semadeni's, except that I used a formulation in terms of Boolean algebras while Semadeni's one is directly formulated in terms of subdivisions of clopen subsets.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Apr 4 at 13:07

























          answered Apr 4 at 10:17









          YCorYCor

          28.9k485140




          28.9k485140











          • $begingroup$
            Thank you for the proof, but I am writing a paper and would like to add a reference (since this fact is well-known and in many papers it is used without references, in spite of the fact that it is not entirely trivial).
            $endgroup$
            – Taras Banakh
            Apr 4 at 10:22











          • $begingroup$
            Yes, I understood your request...!
            $endgroup$
            – YCor
            Apr 4 at 10:22
















          • $begingroup$
            Thank you for the proof, but I am writing a paper and would like to add a reference (since this fact is well-known and in many papers it is used without references, in spite of the fact that it is not entirely trivial).
            $endgroup$
            – Taras Banakh
            Apr 4 at 10:22











          • $begingroup$
            Yes, I understood your request...!
            $endgroup$
            – YCor
            Apr 4 at 10:22















          $begingroup$
          Thank you for the proof, but I am writing a paper and would like to add a reference (since this fact is well-known and in many papers it is used without references, in spite of the fact that it is not entirely trivial).
          $endgroup$
          – Taras Banakh
          Apr 4 at 10:22





          $begingroup$
          Thank you for the proof, but I am writing a paper and would like to add a reference (since this fact is well-known and in many papers it is used without references, in spite of the fact that it is not entirely trivial).
          $endgroup$
          – Taras Banakh
          Apr 4 at 10:22













          $begingroup$
          Yes, I understood your request...!
          $endgroup$
          – YCor
          Apr 4 at 10:22




          $begingroup$
          Yes, I understood your request...!
          $endgroup$
          – YCor
          Apr 4 at 10:22

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327124%2fa-reference-to-a-well-known-characterization-of-scattered-compact-spaces%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

          Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

          Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020