Asymptotics of orbits on graphsGrowth rate of number of loops in a graphAsymptotics for forbidden subwords“Antipodal” maps on regular graphs?Average squared distance in $k$-regular graphsA question about expander graphsFinite vertex-transitive graphs that look like infinite vertex-transitive graphsLovász conjecture and 2-connected graphsHamming representability of finite graphsGraphs formed of vertices of distance $2$Reference on graphs such that contracting 2 non-adjacent vertices increases the Hadwiger number

Asymptotics of orbits on graphs


Growth rate of number of loops in a graphAsymptotics for forbidden subwords“Antipodal” maps on regular graphs?Average squared distance in $k$-regular graphsA question about expander graphsFinite vertex-transitive graphs that look like infinite vertex-transitive graphsLovász conjecture and 2-connected graphsHamming representability of finite graphsGraphs formed of vertices of distance $2$Reference on graphs such that contracting 2 non-adjacent vertices increases the Hadwiger number













4












$begingroup$


Let $X$ be a connected, locally finite graph with vertex set $V(X)$ and $G$ a group acting freely on $X$ such that $X/G$ is a finite graph. Fix a vertex $x$ and for $kinmathbb N$ set
$$
N(k)=# gin G: d(gx,x)le k,
$$

where $d$ is the vertex distance in the graph $X$.
Further set
$$
A(k)=#yin V(X):d(x,y)le k.
$$

Is it true that, as $ktoinfty$, the number $N(k)/A(k)$ tends to $#V(X/G)^-1$? If so, what error term estimates are known?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Very interesting! Can you please add the reference or the source of inspiration for this problem?
    $endgroup$
    – SeF
    Apr 4 at 8:50










  • $begingroup$
    It's kind of a graph analogue of lattice point counting.
    $endgroup$
    – Zero
    Apr 4 at 9:04










  • $begingroup$
    "The theory of lattices in automorphism groups of trees. The theory of tree lattices was developed by Bass, Kulkarni and Lubotzky[25][26] by analogy with the theory of lattices in Lie groups (that is discrete subgroups of Lie groups of finite co-volume). For a discrete subgroup G of the automorphism group of a locally finite tree X one can define a natural notion of volume for the quotient graph of groups A as $vol(A) = sum_v in V frac1lvert A_v rvert$" - wiki on Bass-Serre theory
    $endgroup$
    – i9Fn
    yesterday















4












$begingroup$


Let $X$ be a connected, locally finite graph with vertex set $V(X)$ and $G$ a group acting freely on $X$ such that $X/G$ is a finite graph. Fix a vertex $x$ and for $kinmathbb N$ set
$$
N(k)=# gin G: d(gx,x)le k,
$$

where $d$ is the vertex distance in the graph $X$.
Further set
$$
A(k)=#yin V(X):d(x,y)le k.
$$

Is it true that, as $ktoinfty$, the number $N(k)/A(k)$ tends to $#V(X/G)^-1$? If so, what error term estimates are known?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Very interesting! Can you please add the reference or the source of inspiration for this problem?
    $endgroup$
    – SeF
    Apr 4 at 8:50










  • $begingroup$
    It's kind of a graph analogue of lattice point counting.
    $endgroup$
    – Zero
    Apr 4 at 9:04










  • $begingroup$
    "The theory of lattices in automorphism groups of trees. The theory of tree lattices was developed by Bass, Kulkarni and Lubotzky[25][26] by analogy with the theory of lattices in Lie groups (that is discrete subgroups of Lie groups of finite co-volume). For a discrete subgroup G of the automorphism group of a locally finite tree X one can define a natural notion of volume for the quotient graph of groups A as $vol(A) = sum_v in V frac1lvert A_v rvert$" - wiki on Bass-Serre theory
    $endgroup$
    – i9Fn
    yesterday













4












4








4





$begingroup$


Let $X$ be a connected, locally finite graph with vertex set $V(X)$ and $G$ a group acting freely on $X$ such that $X/G$ is a finite graph. Fix a vertex $x$ and for $kinmathbb N$ set
$$
N(k)=# gin G: d(gx,x)le k,
$$

where $d$ is the vertex distance in the graph $X$.
Further set
$$
A(k)=#yin V(X):d(x,y)le k.
$$

Is it true that, as $ktoinfty$, the number $N(k)/A(k)$ tends to $#V(X/G)^-1$? If so, what error term estimates are known?










share|cite|improve this question











$endgroup$




Let $X$ be a connected, locally finite graph with vertex set $V(X)$ and $G$ a group acting freely on $X$ such that $X/G$ is a finite graph. Fix a vertex $x$ and for $kinmathbb N$ set
$$
N(k)=# gin G: d(gx,x)le k,
$$

where $d$ is the vertex distance in the graph $X$.
Further set
$$
A(k)=#yin V(X):d(x,y)le k.
$$

Is it true that, as $ktoinfty$, the number $N(k)/A(k)$ tends to $#V(X/G)^-1$? If so, what error term estimates are known?







graph-theory asymptotics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 4 at 9:01







Zero

















asked Apr 4 at 7:09









ZeroZero

2617




2617











  • $begingroup$
    Very interesting! Can you please add the reference or the source of inspiration for this problem?
    $endgroup$
    – SeF
    Apr 4 at 8:50










  • $begingroup$
    It's kind of a graph analogue of lattice point counting.
    $endgroup$
    – Zero
    Apr 4 at 9:04










  • $begingroup$
    "The theory of lattices in automorphism groups of trees. The theory of tree lattices was developed by Bass, Kulkarni and Lubotzky[25][26] by analogy with the theory of lattices in Lie groups (that is discrete subgroups of Lie groups of finite co-volume). For a discrete subgroup G of the automorphism group of a locally finite tree X one can define a natural notion of volume for the quotient graph of groups A as $vol(A) = sum_v in V frac1lvert A_v rvert$" - wiki on Bass-Serre theory
    $endgroup$
    – i9Fn
    yesterday
















  • $begingroup$
    Very interesting! Can you please add the reference or the source of inspiration for this problem?
    $endgroup$
    – SeF
    Apr 4 at 8:50










  • $begingroup$
    It's kind of a graph analogue of lattice point counting.
    $endgroup$
    – Zero
    Apr 4 at 9:04










  • $begingroup$
    "The theory of lattices in automorphism groups of trees. The theory of tree lattices was developed by Bass, Kulkarni and Lubotzky[25][26] by analogy with the theory of lattices in Lie groups (that is discrete subgroups of Lie groups of finite co-volume). For a discrete subgroup G of the automorphism group of a locally finite tree X one can define a natural notion of volume for the quotient graph of groups A as $vol(A) = sum_v in V frac1lvert A_v rvert$" - wiki on Bass-Serre theory
    $endgroup$
    – i9Fn
    yesterday















$begingroup$
Very interesting! Can you please add the reference or the source of inspiration for this problem?
$endgroup$
– SeF
Apr 4 at 8:50




$begingroup$
Very interesting! Can you please add the reference or the source of inspiration for this problem?
$endgroup$
– SeF
Apr 4 at 8:50












$begingroup$
It's kind of a graph analogue of lattice point counting.
$endgroup$
– Zero
Apr 4 at 9:04




$begingroup$
It's kind of a graph analogue of lattice point counting.
$endgroup$
– Zero
Apr 4 at 9:04












$begingroup$
"The theory of lattices in automorphism groups of trees. The theory of tree lattices was developed by Bass, Kulkarni and Lubotzky[25][26] by analogy with the theory of lattices in Lie groups (that is discrete subgroups of Lie groups of finite co-volume). For a discrete subgroup G of the automorphism group of a locally finite tree X one can define a natural notion of volume for the quotient graph of groups A as $vol(A) = sum_v in V frac1lvert A_v rvert$" - wiki on Bass-Serre theory
$endgroup$
– i9Fn
yesterday




$begingroup$
"The theory of lattices in automorphism groups of trees. The theory of tree lattices was developed by Bass, Kulkarni and Lubotzky[25][26] by analogy with the theory of lattices in Lie groups (that is discrete subgroups of Lie groups of finite co-volume). For a discrete subgroup G of the automorphism group of a locally finite tree X one can define a natural notion of volume for the quotient graph of groups A as $vol(A) = sum_v in V frac1lvert A_v rvert$" - wiki on Bass-Serre theory
$endgroup$
– i9Fn
yesterday










1 Answer
1






active

oldest

votes


















5












$begingroup$

It is possible that the limit does not exist at all: Consider the free group on two generators acting on the $(4,2)$-biregular tree in the obvious way. This action is free and has 3 orbits (one containing all vertices of degree 4, and the other two containing "half" of the vertices of degree 2).



Let $x$ be a vertex of degree $4$. Then $N(k)$ is the number of vertices of degree 4 in $B_x(k)$, and $A(k)$ is the total number of vertices in $B_x(k)$. If we write $a_k$ and $b_k$ for the number of vertices at distance exactly $k$ from $x$ which have degree 4 or 2 respectively, we get $a_0 = 1$, and $b_2l+1 = a_2l+2 = 4cdot3^l$ and $b_2l = a_2l+1 = 0$ for $l geq 0$. Note that
$$fracN(k)A(k) = fracsum_i leq k a_isum_i leq k a_i + b_i$$
and if I'm not mistaken, plugging in the above values gives a limit of $frac 12$ for the subsequence of even $k$, and $frac 14$ for the subsequence of odd $k$.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Can you explain how the free group acts on the $(4,2)$-biregular tree? It is not obvious to me what is the obvious way.
    $endgroup$
    – i9Fn
    2 days ago












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327119%2fasymptotics-of-orbits-on-graphs%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

It is possible that the limit does not exist at all: Consider the free group on two generators acting on the $(4,2)$-biregular tree in the obvious way. This action is free and has 3 orbits (one containing all vertices of degree 4, and the other two containing "half" of the vertices of degree 2).



Let $x$ be a vertex of degree $4$. Then $N(k)$ is the number of vertices of degree 4 in $B_x(k)$, and $A(k)$ is the total number of vertices in $B_x(k)$. If we write $a_k$ and $b_k$ for the number of vertices at distance exactly $k$ from $x$ which have degree 4 or 2 respectively, we get $a_0 = 1$, and $b_2l+1 = a_2l+2 = 4cdot3^l$ and $b_2l = a_2l+1 = 0$ for $l geq 0$. Note that
$$fracN(k)A(k) = fracsum_i leq k a_isum_i leq k a_i + b_i$$
and if I'm not mistaken, plugging in the above values gives a limit of $frac 12$ for the subsequence of even $k$, and $frac 14$ for the subsequence of odd $k$.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Can you explain how the free group acts on the $(4,2)$-biregular tree? It is not obvious to me what is the obvious way.
    $endgroup$
    – i9Fn
    2 days ago
















5












$begingroup$

It is possible that the limit does not exist at all: Consider the free group on two generators acting on the $(4,2)$-biregular tree in the obvious way. This action is free and has 3 orbits (one containing all vertices of degree 4, and the other two containing "half" of the vertices of degree 2).



Let $x$ be a vertex of degree $4$. Then $N(k)$ is the number of vertices of degree 4 in $B_x(k)$, and $A(k)$ is the total number of vertices in $B_x(k)$. If we write $a_k$ and $b_k$ for the number of vertices at distance exactly $k$ from $x$ which have degree 4 or 2 respectively, we get $a_0 = 1$, and $b_2l+1 = a_2l+2 = 4cdot3^l$ and $b_2l = a_2l+1 = 0$ for $l geq 0$. Note that
$$fracN(k)A(k) = fracsum_i leq k a_isum_i leq k a_i + b_i$$
and if I'm not mistaken, plugging in the above values gives a limit of $frac 12$ for the subsequence of even $k$, and $frac 14$ for the subsequence of odd $k$.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Can you explain how the free group acts on the $(4,2)$-biregular tree? It is not obvious to me what is the obvious way.
    $endgroup$
    – i9Fn
    2 days ago














5












5








5





$begingroup$

It is possible that the limit does not exist at all: Consider the free group on two generators acting on the $(4,2)$-biregular tree in the obvious way. This action is free and has 3 orbits (one containing all vertices of degree 4, and the other two containing "half" of the vertices of degree 2).



Let $x$ be a vertex of degree $4$. Then $N(k)$ is the number of vertices of degree 4 in $B_x(k)$, and $A(k)$ is the total number of vertices in $B_x(k)$. If we write $a_k$ and $b_k$ for the number of vertices at distance exactly $k$ from $x$ which have degree 4 or 2 respectively, we get $a_0 = 1$, and $b_2l+1 = a_2l+2 = 4cdot3^l$ and $b_2l = a_2l+1 = 0$ for $l geq 0$. Note that
$$fracN(k)A(k) = fracsum_i leq k a_isum_i leq k a_i + b_i$$
and if I'm not mistaken, plugging in the above values gives a limit of $frac 12$ for the subsequence of even $k$, and $frac 14$ for the subsequence of odd $k$.






share|cite|improve this answer









$endgroup$



It is possible that the limit does not exist at all: Consider the free group on two generators acting on the $(4,2)$-biregular tree in the obvious way. This action is free and has 3 orbits (one containing all vertices of degree 4, and the other two containing "half" of the vertices of degree 2).



Let $x$ be a vertex of degree $4$. Then $N(k)$ is the number of vertices of degree 4 in $B_x(k)$, and $A(k)$ is the total number of vertices in $B_x(k)$. If we write $a_k$ and $b_k$ for the number of vertices at distance exactly $k$ from $x$ which have degree 4 or 2 respectively, we get $a_0 = 1$, and $b_2l+1 = a_2l+2 = 4cdot3^l$ and $b_2l = a_2l+1 = 0$ for $l geq 0$. Note that
$$fracN(k)A(k) = fracsum_i leq k a_isum_i leq k a_i + b_i$$
and if I'm not mistaken, plugging in the above values gives a limit of $frac 12$ for the subsequence of even $k$, and $frac 14$ for the subsequence of odd $k$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 4 at 11:19









Florian LehnerFlorian Lehner

54138




54138







  • 1




    $begingroup$
    Can you explain how the free group acts on the $(4,2)$-biregular tree? It is not obvious to me what is the obvious way.
    $endgroup$
    – i9Fn
    2 days ago













  • 1




    $begingroup$
    Can you explain how the free group acts on the $(4,2)$-biregular tree? It is not obvious to me what is the obvious way.
    $endgroup$
    – i9Fn
    2 days ago








1




1




$begingroup$
Can you explain how the free group acts on the $(4,2)$-biregular tree? It is not obvious to me what is the obvious way.
$endgroup$
– i9Fn
2 days ago





$begingroup$
Can you explain how the free group acts on the $(4,2)$-biregular tree? It is not obvious to me what is the obvious way.
$endgroup$
– i9Fn
2 days ago


















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327119%2fasymptotics-of-orbits-on-graphs%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020