Infinite Abelian subgroup of infinite non Abelian group exampleConjugacy in Infinite GroupsUsing semiproduct to construct a non-abelian group.When can an infinite abelian group be embedded in the multiplicative group of a field?A group is generated by two elements of order $2$ is infinite and non-abelianProve that any subgroup of a free Abelian group of rank $r$ is free Abelian of rank at most $r$.Does there exist an infinite non-abelian group such that all of its proper subgroups become cyclic?Showing a group is Abelian using its presentation.Noncyclic (infinite) group with totally ordered subgroup latticeNon-split central extension of Z by a finite simple non-abelian groupA group with an infinite cyclic normal subgroup that has a finite cyclic quotient is abelian

What do you call a Matrix-like slowdown and camera movement effect?

How do I create uniquely male characters?

Motorized valve interfering with button?

Is it possible to make sharp wind that can cut stuff from afar?

I probably found a bug with the sudo apt install function

A Journey Through Space and Time

"which" command doesn't work / path of Safari?

Can I interfere when another PC is about to be attacked?

What is the logic behind how bash tests for true/false?

Why are only specific transaction types accepted into the mempool?

How is this relation reflexive?

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?

How can I hide my bitcoin transactions to protect anonymity from others?

What defenses are there against being summoned by the Gate spell?

What is the command to reset a PC without deleting any files

New order #4: World

What typically incentivizes a professor to change jobs to a lower ranking university?

Are tax years 2016 & 2017 back taxes deductible for tax year 2018?

How old can references or sources in a thesis be?

How to make payment on the internet without leaving a money trail?

The use of multiple foreign keys on same column in SQL Server

Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).

What exactly is the parasitic white layer that forms after iron parts are treated with ammonia?



Infinite Abelian subgroup of infinite non Abelian group example


Conjugacy in Infinite GroupsUsing semiproduct to construct a non-abelian group.When can an infinite abelian group be embedded in the multiplicative group of a field?A group is generated by two elements of order $2$ is infinite and non-abelianProve that any subgroup of a free Abelian group of rank $r$ is free Abelian of rank at most $r$.Does there exist an infinite non-abelian group such that all of its proper subgroups become cyclic?Showing a group is Abelian using its presentation.Noncyclic (infinite) group with totally ordered subgroup latticeNon-split central extension of Z by a finite simple non-abelian groupA group with an infinite cyclic normal subgroup that has a finite cyclic quotient is abelian













7












$begingroup$


My thought is that we may take GL(2,F) as the group and this is obviously infinite and non abelian since matrix multiplication does not commute. Then I thought that if we make $langle grangle$, for some $g$ in $mathrmGL(2,F)$, which will be cyclic and hence Abelian, for instance:
$ g=
bigg[
beginmatrix
1&0\0&2
endmatrix
bigg]
$
. Then $g^n$ will be in the form $ g^n=
bigg[
beginmatrix
1&0\0&2^n
endmatrix
bigg]
$
. This is obviously infinite since $g^n=e Leftrightarrow n = 0$.
Would this example work? Much thanks in advance!










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    If $A$ is an infinite abelian group and $H$ is a finite, non-abelian group then $Atimes H$ works. [Also, you could take $F=mathbbZ$ in your example to get something easy to work with, but which isn't a field :-) ]
    $endgroup$
    – user1729
    Apr 4 at 12:32











  • $begingroup$
    A physical example: If you rotate a 3D object around the z-axis, those rotations are abelian. However, if you rotate it about both the z-axis and the x-axis, that's non-abelian.
    $endgroup$
    – Mateen Ulhaq
    2 days ago















7












$begingroup$


My thought is that we may take GL(2,F) as the group and this is obviously infinite and non abelian since matrix multiplication does not commute. Then I thought that if we make $langle grangle$, for some $g$ in $mathrmGL(2,F)$, which will be cyclic and hence Abelian, for instance:
$ g=
bigg[
beginmatrix
1&0\0&2
endmatrix
bigg]
$
. Then $g^n$ will be in the form $ g^n=
bigg[
beginmatrix
1&0\0&2^n
endmatrix
bigg]
$
. This is obviously infinite since $g^n=e Leftrightarrow n = 0$.
Would this example work? Much thanks in advance!










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    If $A$ is an infinite abelian group and $H$ is a finite, non-abelian group then $Atimes H$ works. [Also, you could take $F=mathbbZ$ in your example to get something easy to work with, but which isn't a field :-) ]
    $endgroup$
    – user1729
    Apr 4 at 12:32











  • $begingroup$
    A physical example: If you rotate a 3D object around the z-axis, those rotations are abelian. However, if you rotate it about both the z-axis and the x-axis, that's non-abelian.
    $endgroup$
    – Mateen Ulhaq
    2 days ago













7












7








7





$begingroup$


My thought is that we may take GL(2,F) as the group and this is obviously infinite and non abelian since matrix multiplication does not commute. Then I thought that if we make $langle grangle$, for some $g$ in $mathrmGL(2,F)$, which will be cyclic and hence Abelian, for instance:
$ g=
bigg[
beginmatrix
1&0\0&2
endmatrix
bigg]
$
. Then $g^n$ will be in the form $ g^n=
bigg[
beginmatrix
1&0\0&2^n
endmatrix
bigg]
$
. This is obviously infinite since $g^n=e Leftrightarrow n = 0$.
Would this example work? Much thanks in advance!










share|cite|improve this question











$endgroup$




My thought is that we may take GL(2,F) as the group and this is obviously infinite and non abelian since matrix multiplication does not commute. Then I thought that if we make $langle grangle$, for some $g$ in $mathrmGL(2,F)$, which will be cyclic and hence Abelian, for instance:
$ g=
bigg[
beginmatrix
1&0\0&2
endmatrix
bigg]
$
. Then $g^n$ will be in the form $ g^n=
bigg[
beginmatrix
1&0\0&2^n
endmatrix
bigg]
$
. This is obviously infinite since $g^n=e Leftrightarrow n = 0$.
Would this example work? Much thanks in advance!







abstract-algebra group-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 4 at 12:36









user1729

17.7k64294




17.7k64294










asked Apr 4 at 12:18









JustWanderingJustWandering

692




692







  • 3




    $begingroup$
    If $A$ is an infinite abelian group and $H$ is a finite, non-abelian group then $Atimes H$ works. [Also, you could take $F=mathbbZ$ in your example to get something easy to work with, but which isn't a field :-) ]
    $endgroup$
    – user1729
    Apr 4 at 12:32











  • $begingroup$
    A physical example: If you rotate a 3D object around the z-axis, those rotations are abelian. However, if you rotate it about both the z-axis and the x-axis, that's non-abelian.
    $endgroup$
    – Mateen Ulhaq
    2 days ago












  • 3




    $begingroup$
    If $A$ is an infinite abelian group and $H$ is a finite, non-abelian group then $Atimes H$ works. [Also, you could take $F=mathbbZ$ in your example to get something easy to work with, but which isn't a field :-) ]
    $endgroup$
    – user1729
    Apr 4 at 12:32











  • $begingroup$
    A physical example: If you rotate a 3D object around the z-axis, those rotations are abelian. However, if you rotate it about both the z-axis and the x-axis, that's non-abelian.
    $endgroup$
    – Mateen Ulhaq
    2 days ago







3




3




$begingroup$
If $A$ is an infinite abelian group and $H$ is a finite, non-abelian group then $Atimes H$ works. [Also, you could take $F=mathbbZ$ in your example to get something easy to work with, but which isn't a field :-) ]
$endgroup$
– user1729
Apr 4 at 12:32





$begingroup$
If $A$ is an infinite abelian group and $H$ is a finite, non-abelian group then $Atimes H$ works. [Also, you could take $F=mathbbZ$ in your example to get something easy to work with, but which isn't a field :-) ]
$endgroup$
– user1729
Apr 4 at 12:32













$begingroup$
A physical example: If you rotate a 3D object around the z-axis, those rotations are abelian. However, if you rotate it about both the z-axis and the x-axis, that's non-abelian.
$endgroup$
– Mateen Ulhaq
2 days ago




$begingroup$
A physical example: If you rotate a 3D object around the z-axis, those rotations are abelian. However, if you rotate it about both the z-axis and the x-axis, that's non-abelian.
$endgroup$
– Mateen Ulhaq
2 days ago










5 Answers
5






active

oldest

votes


















9












$begingroup$

The simplest example is $G=mathbb Z times S_3$ and $H=mathbb Z$.






share|cite|improve this answer









$endgroup$








  • 11




    $begingroup$
    It's funny because the groups aren't simple.
    $endgroup$
    – Servaes
    Apr 4 at 12:34










  • $begingroup$
    That's math humor! :-)
    $endgroup$
    – alexis
    2 days ago


















8












$begingroup$

This example works indeed, if $F$ is infinite and $2^nneq1$ in $F$ for all non-zero $ninBbbZ$. This is satisfied for obvious candidates for $F$ such as $BbbR$, $BbbC$ and $BbbQ$, but fails for other candidates such as the finite fields $BbbF_q$, but also infinite fields of positive characteristic such as $BbbF_p(T)$.



Assuming $F$ is a field, the condition that $2^nneq1$ for all non-zero $ninBbbZ$ is equivalent to $operatornamecharF=0$, from which it follows that $F$ is infinite. So your example works if and only if $operatornamecharF=0$.






share|cite|improve this answer









$endgroup$




















    5












    $begingroup$

    Assuming that $Bbb F$ has characteristic $0,$ that definitely works. Nicely done!



    It also allows you to prove an inclusion $Bbb Zhookrightarrow GL(2,Bbb F).$






    share|cite|improve this answer











    $endgroup$




















      1












      $begingroup$

      A simple example: let $G = S(mathbb Z)$, the group of all permutations of the integers. Let $A$ be the subgroup generated by the transpositions $(n,n+1) $. Since the generating transpositions are all pairwise disjoint, they trivially commute with each other.






      share|cite|improve this answer









      $endgroup$




















        -1












        $begingroup$

        Yes it works if you take $F$ to be an infinite field for example.



        Although, as was pointed out by others even in this case you'll have to make some assumptions on $F$ to get your particular example working.



        I guess it'd be more natural to consider the subset of all diagonal submatrices. It certainly is a subgroup as $mathrmdiag(x,y)^-1 = mathrmdiag(x^-1, y^-1)$.



        This subgroup is isomorphic to $F^times oplus F^times$, which is abelian and infinite if $F$ is.






        share|cite|improve this answer











        $endgroup$












        • $begingroup$
          It does not work for infinite fields such as $BbbF_p(T)$.
          $endgroup$
          – Servaes
          Apr 4 at 12:22










        • $begingroup$
          ah obviously yes.
          $endgroup$
          – lush
          Apr 4 at 12:23










        • $begingroup$
          Changed it @Servaes, I had forgotten that he asked for a particular example to work.
          $endgroup$
          – lush
          Apr 4 at 12:34











        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3174561%2finfinite-abelian-subgroup-of-infinite-non-abelian-group-example%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        9












        $begingroup$

        The simplest example is $G=mathbb Z times S_3$ and $H=mathbb Z$.






        share|cite|improve this answer









        $endgroup$








        • 11




          $begingroup$
          It's funny because the groups aren't simple.
          $endgroup$
          – Servaes
          Apr 4 at 12:34










        • $begingroup$
          That's math humor! :-)
          $endgroup$
          – alexis
          2 days ago















        9












        $begingroup$

        The simplest example is $G=mathbb Z times S_3$ and $H=mathbb Z$.






        share|cite|improve this answer









        $endgroup$








        • 11




          $begingroup$
          It's funny because the groups aren't simple.
          $endgroup$
          – Servaes
          Apr 4 at 12:34










        • $begingroup$
          That's math humor! :-)
          $endgroup$
          – alexis
          2 days ago













        9












        9








        9





        $begingroup$

        The simplest example is $G=mathbb Z times S_3$ and $H=mathbb Z$.






        share|cite|improve this answer









        $endgroup$



        The simplest example is $G=mathbb Z times S_3$ and $H=mathbb Z$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Apr 4 at 12:31









        lhflhf

        167k11172404




        167k11172404







        • 11




          $begingroup$
          It's funny because the groups aren't simple.
          $endgroup$
          – Servaes
          Apr 4 at 12:34










        • $begingroup$
          That's math humor! :-)
          $endgroup$
          – alexis
          2 days ago












        • 11




          $begingroup$
          It's funny because the groups aren't simple.
          $endgroup$
          – Servaes
          Apr 4 at 12:34










        • $begingroup$
          That's math humor! :-)
          $endgroup$
          – alexis
          2 days ago







        11




        11




        $begingroup$
        It's funny because the groups aren't simple.
        $endgroup$
        – Servaes
        Apr 4 at 12:34




        $begingroup$
        It's funny because the groups aren't simple.
        $endgroup$
        – Servaes
        Apr 4 at 12:34












        $begingroup$
        That's math humor! :-)
        $endgroup$
        – alexis
        2 days ago




        $begingroup$
        That's math humor! :-)
        $endgroup$
        – alexis
        2 days ago











        8












        $begingroup$

        This example works indeed, if $F$ is infinite and $2^nneq1$ in $F$ for all non-zero $ninBbbZ$. This is satisfied for obvious candidates for $F$ such as $BbbR$, $BbbC$ and $BbbQ$, but fails for other candidates such as the finite fields $BbbF_q$, but also infinite fields of positive characteristic such as $BbbF_p(T)$.



        Assuming $F$ is a field, the condition that $2^nneq1$ for all non-zero $ninBbbZ$ is equivalent to $operatornamecharF=0$, from which it follows that $F$ is infinite. So your example works if and only if $operatornamecharF=0$.






        share|cite|improve this answer









        $endgroup$

















          8












          $begingroup$

          This example works indeed, if $F$ is infinite and $2^nneq1$ in $F$ for all non-zero $ninBbbZ$. This is satisfied for obvious candidates for $F$ such as $BbbR$, $BbbC$ and $BbbQ$, but fails for other candidates such as the finite fields $BbbF_q$, but also infinite fields of positive characteristic such as $BbbF_p(T)$.



          Assuming $F$ is a field, the condition that $2^nneq1$ for all non-zero $ninBbbZ$ is equivalent to $operatornamecharF=0$, from which it follows that $F$ is infinite. So your example works if and only if $operatornamecharF=0$.






          share|cite|improve this answer









          $endgroup$















            8












            8








            8





            $begingroup$

            This example works indeed, if $F$ is infinite and $2^nneq1$ in $F$ for all non-zero $ninBbbZ$. This is satisfied for obvious candidates for $F$ such as $BbbR$, $BbbC$ and $BbbQ$, but fails for other candidates such as the finite fields $BbbF_q$, but also infinite fields of positive characteristic such as $BbbF_p(T)$.



            Assuming $F$ is a field, the condition that $2^nneq1$ for all non-zero $ninBbbZ$ is equivalent to $operatornamecharF=0$, from which it follows that $F$ is infinite. So your example works if and only if $operatornamecharF=0$.






            share|cite|improve this answer









            $endgroup$



            This example works indeed, if $F$ is infinite and $2^nneq1$ in $F$ for all non-zero $ninBbbZ$. This is satisfied for obvious candidates for $F$ such as $BbbR$, $BbbC$ and $BbbQ$, but fails for other candidates such as the finite fields $BbbF_q$, but also infinite fields of positive characteristic such as $BbbF_p(T)$.



            Assuming $F$ is a field, the condition that $2^nneq1$ for all non-zero $ninBbbZ$ is equivalent to $operatornamecharF=0$, from which it follows that $F$ is infinite. So your example works if and only if $operatornamecharF=0$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Apr 4 at 12:22









            ServaesServaes

            30k342101




            30k342101





















                5












                $begingroup$

                Assuming that $Bbb F$ has characteristic $0,$ that definitely works. Nicely done!



                It also allows you to prove an inclusion $Bbb Zhookrightarrow GL(2,Bbb F).$






                share|cite|improve this answer











                $endgroup$

















                  5












                  $begingroup$

                  Assuming that $Bbb F$ has characteristic $0,$ that definitely works. Nicely done!



                  It also allows you to prove an inclusion $Bbb Zhookrightarrow GL(2,Bbb F).$






                  share|cite|improve this answer











                  $endgroup$















                    5












                    5








                    5





                    $begingroup$

                    Assuming that $Bbb F$ has characteristic $0,$ that definitely works. Nicely done!



                    It also allows you to prove an inclusion $Bbb Zhookrightarrow GL(2,Bbb F).$






                    share|cite|improve this answer











                    $endgroup$



                    Assuming that $Bbb F$ has characteristic $0,$ that definitely works. Nicely done!



                    It also allows you to prove an inclusion $Bbb Zhookrightarrow GL(2,Bbb F).$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Apr 4 at 12:23

























                    answered Apr 4 at 12:22









                    Cameron BuieCameron Buie

                    86.6k773161




                    86.6k773161





















                        1












                        $begingroup$

                        A simple example: let $G = S(mathbb Z)$, the group of all permutations of the integers. Let $A$ be the subgroup generated by the transpositions $(n,n+1) $. Since the generating transpositions are all pairwise disjoint, they trivially commute with each other.






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          A simple example: let $G = S(mathbb Z)$, the group of all permutations of the integers. Let $A$ be the subgroup generated by the transpositions $(n,n+1) $. Since the generating transpositions are all pairwise disjoint, they trivially commute with each other.






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            A simple example: let $G = S(mathbb Z)$, the group of all permutations of the integers. Let $A$ be the subgroup generated by the transpositions $(n,n+1) $. Since the generating transpositions are all pairwise disjoint, they trivially commute with each other.






                            share|cite|improve this answer









                            $endgroup$



                            A simple example: let $G = S(mathbb Z)$, the group of all permutations of the integers. Let $A$ be the subgroup generated by the transpositions $(n,n+1) $. Since the generating transpositions are all pairwise disjoint, they trivially commute with each other.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Apr 4 at 15:51









                            John ColemanJohn Coleman

                            4,00311224




                            4,00311224





















                                -1












                                $begingroup$

                                Yes it works if you take $F$ to be an infinite field for example.



                                Although, as was pointed out by others even in this case you'll have to make some assumptions on $F$ to get your particular example working.



                                I guess it'd be more natural to consider the subset of all diagonal submatrices. It certainly is a subgroup as $mathrmdiag(x,y)^-1 = mathrmdiag(x^-1, y^-1)$.



                                This subgroup is isomorphic to $F^times oplus F^times$, which is abelian and infinite if $F$ is.






                                share|cite|improve this answer











                                $endgroup$












                                • $begingroup$
                                  It does not work for infinite fields such as $BbbF_p(T)$.
                                  $endgroup$
                                  – Servaes
                                  Apr 4 at 12:22










                                • $begingroup$
                                  ah obviously yes.
                                  $endgroup$
                                  – lush
                                  Apr 4 at 12:23










                                • $begingroup$
                                  Changed it @Servaes, I had forgotten that he asked for a particular example to work.
                                  $endgroup$
                                  – lush
                                  Apr 4 at 12:34















                                -1












                                $begingroup$

                                Yes it works if you take $F$ to be an infinite field for example.



                                Although, as was pointed out by others even in this case you'll have to make some assumptions on $F$ to get your particular example working.



                                I guess it'd be more natural to consider the subset of all diagonal submatrices. It certainly is a subgroup as $mathrmdiag(x,y)^-1 = mathrmdiag(x^-1, y^-1)$.



                                This subgroup is isomorphic to $F^times oplus F^times$, which is abelian and infinite if $F$ is.






                                share|cite|improve this answer











                                $endgroup$












                                • $begingroup$
                                  It does not work for infinite fields such as $BbbF_p(T)$.
                                  $endgroup$
                                  – Servaes
                                  Apr 4 at 12:22










                                • $begingroup$
                                  ah obviously yes.
                                  $endgroup$
                                  – lush
                                  Apr 4 at 12:23










                                • $begingroup$
                                  Changed it @Servaes, I had forgotten that he asked for a particular example to work.
                                  $endgroup$
                                  – lush
                                  Apr 4 at 12:34













                                -1












                                -1








                                -1





                                $begingroup$

                                Yes it works if you take $F$ to be an infinite field for example.



                                Although, as was pointed out by others even in this case you'll have to make some assumptions on $F$ to get your particular example working.



                                I guess it'd be more natural to consider the subset of all diagonal submatrices. It certainly is a subgroup as $mathrmdiag(x,y)^-1 = mathrmdiag(x^-1, y^-1)$.



                                This subgroup is isomorphic to $F^times oplus F^times$, which is abelian and infinite if $F$ is.






                                share|cite|improve this answer











                                $endgroup$



                                Yes it works if you take $F$ to be an infinite field for example.



                                Although, as was pointed out by others even in this case you'll have to make some assumptions on $F$ to get your particular example working.



                                I guess it'd be more natural to consider the subset of all diagonal submatrices. It certainly is a subgroup as $mathrmdiag(x,y)^-1 = mathrmdiag(x^-1, y^-1)$.



                                This subgroup is isomorphic to $F^times oplus F^times$, which is abelian and infinite if $F$ is.







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited Apr 4 at 12:27

























                                answered Apr 4 at 12:21









                                lushlush

                                757116




                                757116











                                • $begingroup$
                                  It does not work for infinite fields such as $BbbF_p(T)$.
                                  $endgroup$
                                  – Servaes
                                  Apr 4 at 12:22










                                • $begingroup$
                                  ah obviously yes.
                                  $endgroup$
                                  – lush
                                  Apr 4 at 12:23










                                • $begingroup$
                                  Changed it @Servaes, I had forgotten that he asked for a particular example to work.
                                  $endgroup$
                                  – lush
                                  Apr 4 at 12:34
















                                • $begingroup$
                                  It does not work for infinite fields such as $BbbF_p(T)$.
                                  $endgroup$
                                  – Servaes
                                  Apr 4 at 12:22










                                • $begingroup$
                                  ah obviously yes.
                                  $endgroup$
                                  – lush
                                  Apr 4 at 12:23










                                • $begingroup$
                                  Changed it @Servaes, I had forgotten that he asked for a particular example to work.
                                  $endgroup$
                                  – lush
                                  Apr 4 at 12:34















                                $begingroup$
                                It does not work for infinite fields such as $BbbF_p(T)$.
                                $endgroup$
                                – Servaes
                                Apr 4 at 12:22




                                $begingroup$
                                It does not work for infinite fields such as $BbbF_p(T)$.
                                $endgroup$
                                – Servaes
                                Apr 4 at 12:22












                                $begingroup$
                                ah obviously yes.
                                $endgroup$
                                – lush
                                Apr 4 at 12:23




                                $begingroup$
                                ah obviously yes.
                                $endgroup$
                                – lush
                                Apr 4 at 12:23












                                $begingroup$
                                Changed it @Servaes, I had forgotten that he asked for a particular example to work.
                                $endgroup$
                                – lush
                                Apr 4 at 12:34




                                $begingroup$
                                Changed it @Servaes, I had forgotten that he asked for a particular example to work.
                                $endgroup$
                                – lush
                                Apr 4 at 12:34

















                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3174561%2finfinite-abelian-subgroup-of-infinite-non-abelian-group-example%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                                Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                                Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020