Eigenvalues of a real orthogonal matrix. The Next CEO of Stack OverflowDo real matrices always have real eigenvalues?Generalized eigenvalue problem; why do real eigenvalues exist?If $A$ is a real symmetric matrix, then $A$ has real eigenvalues.Block diagonal form of elements of SO(n)Eigenvectors and eigenvalues of Hessian matrixproperties of, 3x3 matrix, determinant 1, real eigenvaluesWhy eigenvalues of an orthogonal matrix made with QR decomposition include -1?Determine the matrix of the orthogonal projectionLet $A in mathbbC^n times n$ be hermitian. Prove all eigenvalues of $A$ are real…Existence condition of Real Eigenvalues for Non-Symmetric Real Matrix

Can I hook these wires up to find the connection to a dead outlet?

Was the Stack Exchange "Happy April Fools" page fitting with the 90s code?

Is it okay to majorly distort historical facts while writing a fiction story?

Does the Idaho Potato Commission associate potato skins with healthy eating?

Find a path from s to t using as few red nodes as possible

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

Why was Sir Cadogan fired?

How seriously should I take size and weight limits of hand luggage?

Find the majority element, which appears more than half the time

Shortening a title without changing its meaning

Upgrading From a 9 Speed Sora Derailleur?

Does Germany produce more waste than the US?

pgfplots: How to draw a tangent graph below two others?

That's an odd coin - I wonder why

Is there a rule of thumb for determining the amount one should accept for a settlement offer?

How can I separate the number from the unit in argument?

Advance Calculus Limit question

Strange use of "whether ... than ..." in official text

Is it a bad idea to plug the other end of ESD strap to wall ground?

How does a dynamic QR code work?

Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico

Oldie but Goldie

Can you teleport closer to a creature you are Frightened of?

How to find if SQL server backup is encrypted with TDE without restoring the backup



Eigenvalues of a real orthogonal matrix.



The Next CEO of Stack OverflowDo real matrices always have real eigenvalues?Generalized eigenvalue problem; why do real eigenvalues exist?If $A$ is a real symmetric matrix, then $A$ has real eigenvalues.Block diagonal form of elements of SO(n)Eigenvectors and eigenvalues of Hessian matrixproperties of, 3x3 matrix, determinant 1, real eigenvaluesWhy eigenvalues of an orthogonal matrix made with QR decomposition include -1?Determine the matrix of the orthogonal projectionLet $A in mathbbC^n times n$ be hermitian. Prove all eigenvalues of $A$ are real…Existence condition of Real Eigenvalues for Non-Symmetric Real Matrix










4












$begingroup$


Let $A$ be a real orthogonal matrix. Then $A^text T A = I.$ Let $lambda in Bbb C$ be an eigenvalue of $A$ corresponding to the eigenvector $X in Bbb C^n.$ Then we have





$$beginalign* X^text T A^text T A X = X^text T X. \ implies (AX)^text T AX & = X^text T X. \ implies (lambda X)^text T lambda X & = X^text T X. \ implies lambda^2 X^text T X & = X^text T X. \ implies (lambda^2 - 1) X^text T X & = 0. endalign*$$





Since $X$ is an eigenvector $X neq 0.$ Therefore $^2 = X^text T X neq 0.$ Hence we must have $lambda^2 - 1 = 0$ i.e. $lambda^2 = 1.$ So $lambda = pm 1.$



So according to my argument above it follows that eigenvalues of a real orthogonal matrix are $pm 1.$ But I think that I am wrong as I know that the eigenvalues of an orthogonal matrix are unit modulus i.e. they lie on the unit circle.



What's going wrong in my argument above. Please help me in this regard.



Thank you very much for your valuable time.










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    Let $A$ be a real orthogonal matrix. Then $A^text T A = I.$ Let $lambda in Bbb C$ be an eigenvalue of $A$ corresponding to the eigenvector $X in Bbb C^n.$ Then we have





    $$beginalign* X^text T A^text T A X = X^text T X. \ implies (AX)^text T AX & = X^text T X. \ implies (lambda X)^text T lambda X & = X^text T X. \ implies lambda^2 X^text T X & = X^text T X. \ implies (lambda^2 - 1) X^text T X & = 0. endalign*$$





    Since $X$ is an eigenvector $X neq 0.$ Therefore $^2 = X^text T X neq 0.$ Hence we must have $lambda^2 - 1 = 0$ i.e. $lambda^2 = 1.$ So $lambda = pm 1.$



    So according to my argument above it follows that eigenvalues of a real orthogonal matrix are $pm 1.$ But I think that I am wrong as I know that the eigenvalues of an orthogonal matrix are unit modulus i.e. they lie on the unit circle.



    What's going wrong in my argument above. Please help me in this regard.



    Thank you very much for your valuable time.










    share|cite|improve this question











    $endgroup$














      4












      4








      4


      0



      $begingroup$


      Let $A$ be a real orthogonal matrix. Then $A^text T A = I.$ Let $lambda in Bbb C$ be an eigenvalue of $A$ corresponding to the eigenvector $X in Bbb C^n.$ Then we have





      $$beginalign* X^text T A^text T A X = X^text T X. \ implies (AX)^text T AX & = X^text T X. \ implies (lambda X)^text T lambda X & = X^text T X. \ implies lambda^2 X^text T X & = X^text T X. \ implies (lambda^2 - 1) X^text T X & = 0. endalign*$$





      Since $X$ is an eigenvector $X neq 0.$ Therefore $^2 = X^text T X neq 0.$ Hence we must have $lambda^2 - 1 = 0$ i.e. $lambda^2 = 1.$ So $lambda = pm 1.$



      So according to my argument above it follows that eigenvalues of a real orthogonal matrix are $pm 1.$ But I think that I am wrong as I know that the eigenvalues of an orthogonal matrix are unit modulus i.e. they lie on the unit circle.



      What's going wrong in my argument above. Please help me in this regard.



      Thank you very much for your valuable time.










      share|cite|improve this question











      $endgroup$




      Let $A$ be a real orthogonal matrix. Then $A^text T A = I.$ Let $lambda in Bbb C$ be an eigenvalue of $A$ corresponding to the eigenvector $X in Bbb C^n.$ Then we have





      $$beginalign* X^text T A^text T A X = X^text T X. \ implies (AX)^text T AX & = X^text T X. \ implies (lambda X)^text T lambda X & = X^text T X. \ implies lambda^2 X^text T X & = X^text T X. \ implies (lambda^2 - 1) X^text T X & = 0. endalign*$$





      Since $X$ is an eigenvector $X neq 0.$ Therefore $^2 = X^text T X neq 0.$ Hence we must have $lambda^2 - 1 = 0$ i.e. $lambda^2 = 1.$ So $lambda = pm 1.$



      So according to my argument above it follows that eigenvalues of a real orthogonal matrix are $pm 1.$ But I think that I am wrong as I know that the eigenvalues of an orthogonal matrix are unit modulus i.e. they lie on the unit circle.



      What's going wrong in my argument above. Please help me in this regard.



      Thank you very much for your valuable time.







      linear-algebra eigenvalues-eigenvectors orthogonal-matrices






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday









      Yanko

      8,2672830




      8,2672830










      asked 2 days ago









      math maniac.math maniac.

      1417




      1417




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          The mistake is your assumption that $X^TXne0$. Consider a simple example:
          $$A=pmatrix0&1\-1&0.$$
          It is orthogonal, and its eigenvalues are $pm i$. One eigenvector is
          $$X=pmatrix1\i.$$
          It satisfies $X^TX=0$.



          However, replacing $X^T$ in your argument by $X^H$ (complex conjugate
          of transpose) will give you the correct conclusion that $|lambda|^2=1$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            how can Euclidean norm of non zero vector be zero?
            $endgroup$
            – math maniac.
            2 days ago






          • 2




            $begingroup$
            @mathmaniac. How can $1^2+i^2$ equal zero?
            $endgroup$
            – Lord Shark the Unknown
            2 days ago










          • $begingroup$
            I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
            $endgroup$
            – math maniac.
            2 days ago







          • 1




            $begingroup$
            Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
            $endgroup$
            – math maniac.
            2 days ago












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169070%2feigenvalues-of-a-real-orthogonal-matrix%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          The mistake is your assumption that $X^TXne0$. Consider a simple example:
          $$A=pmatrix0&1\-1&0.$$
          It is orthogonal, and its eigenvalues are $pm i$. One eigenvector is
          $$X=pmatrix1\i.$$
          It satisfies $X^TX=0$.



          However, replacing $X^T$ in your argument by $X^H$ (complex conjugate
          of transpose) will give you the correct conclusion that $|lambda|^2=1$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            how can Euclidean norm of non zero vector be zero?
            $endgroup$
            – math maniac.
            2 days ago






          • 2




            $begingroup$
            @mathmaniac. How can $1^2+i^2$ equal zero?
            $endgroup$
            – Lord Shark the Unknown
            2 days ago










          • $begingroup$
            I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
            $endgroup$
            – math maniac.
            2 days ago







          • 1




            $begingroup$
            Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
            $endgroup$
            – math maniac.
            2 days ago
















          4












          $begingroup$

          The mistake is your assumption that $X^TXne0$. Consider a simple example:
          $$A=pmatrix0&1\-1&0.$$
          It is orthogonal, and its eigenvalues are $pm i$. One eigenvector is
          $$X=pmatrix1\i.$$
          It satisfies $X^TX=0$.



          However, replacing $X^T$ in your argument by $X^H$ (complex conjugate
          of transpose) will give you the correct conclusion that $|lambda|^2=1$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            how can Euclidean norm of non zero vector be zero?
            $endgroup$
            – math maniac.
            2 days ago






          • 2




            $begingroup$
            @mathmaniac. How can $1^2+i^2$ equal zero?
            $endgroup$
            – Lord Shark the Unknown
            2 days ago










          • $begingroup$
            I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
            $endgroup$
            – math maniac.
            2 days ago







          • 1




            $begingroup$
            Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
            $endgroup$
            – math maniac.
            2 days ago














          4












          4








          4





          $begingroup$

          The mistake is your assumption that $X^TXne0$. Consider a simple example:
          $$A=pmatrix0&1\-1&0.$$
          It is orthogonal, and its eigenvalues are $pm i$. One eigenvector is
          $$X=pmatrix1\i.$$
          It satisfies $X^TX=0$.



          However, replacing $X^T$ in your argument by $X^H$ (complex conjugate
          of transpose) will give you the correct conclusion that $|lambda|^2=1$.






          share|cite|improve this answer









          $endgroup$



          The mistake is your assumption that $X^TXne0$. Consider a simple example:
          $$A=pmatrix0&1\-1&0.$$
          It is orthogonal, and its eigenvalues are $pm i$. One eigenvector is
          $$X=pmatrix1\i.$$
          It satisfies $X^TX=0$.



          However, replacing $X^T$ in your argument by $X^H$ (complex conjugate
          of transpose) will give you the correct conclusion that $|lambda|^2=1$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 days ago









          Lord Shark the UnknownLord Shark the Unknown

          107k1162135




          107k1162135











          • $begingroup$
            how can Euclidean norm of non zero vector be zero?
            $endgroup$
            – math maniac.
            2 days ago






          • 2




            $begingroup$
            @mathmaniac. How can $1^2+i^2$ equal zero?
            $endgroup$
            – Lord Shark the Unknown
            2 days ago










          • $begingroup$
            I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
            $endgroup$
            – math maniac.
            2 days ago







          • 1




            $begingroup$
            Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
            $endgroup$
            – math maniac.
            2 days ago

















          • $begingroup$
            how can Euclidean norm of non zero vector be zero?
            $endgroup$
            – math maniac.
            2 days ago






          • 2




            $begingroup$
            @mathmaniac. How can $1^2+i^2$ equal zero?
            $endgroup$
            – Lord Shark the Unknown
            2 days ago










          • $begingroup$
            I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
            $endgroup$
            – math maniac.
            2 days ago







          • 1




            $begingroup$
            Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
            $endgroup$
            – math maniac.
            2 days ago
















          $begingroup$
          how can Euclidean norm of non zero vector be zero?
          $endgroup$
          – math maniac.
          2 days ago




          $begingroup$
          how can Euclidean norm of non zero vector be zero?
          $endgroup$
          – math maniac.
          2 days ago




          2




          2




          $begingroup$
          @mathmaniac. How can $1^2+i^2$ equal zero?
          $endgroup$
          – Lord Shark the Unknown
          2 days ago




          $begingroup$
          @mathmaniac. How can $1^2+i^2$ equal zero?
          $endgroup$
          – Lord Shark the Unknown
          2 days ago












          $begingroup$
          I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
          $endgroup$
          – math maniac.
          2 days ago





          $begingroup$
          I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
          $endgroup$
          – math maniac.
          2 days ago





          1




          1




          $begingroup$
          Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
          $endgroup$
          – math maniac.
          2 days ago





          $begingroup$
          Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
          $endgroup$
          – math maniac.
          2 days ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169070%2feigenvalues-of-a-real-orthogonal-matrix%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

          Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

          Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020