For any $k in mathbbN$, there exist $s in mathbbN$ such that the expression $9s+3+2^k$ is a power of $2$ The Next CEO of Stack OverflowFinding $a,b$ such that $a^n + b^n $ is $(n+1)^th$ powerProof: For all integers $x$ and $y$, if $x^3+x = y^3+y$ then $x = y$Does there exist a $(m,n)inmathbb N$ such that $m^3-2^n=3$?disprove : $forall n in mathbbN exists m in mathbbN$ such that $n<m<n^2$Is there any palindromic power of $2$?Prove that there exists a multiple of $2016$, such that the multiple has only $4$ and $6$ as its digits.The Number Theoretic Statement is …For which of the following equations does it exist $s,t in mathbbZ$ so that the equation is satisfiedProve or disprove that, for any $n in mathbbN_+$, there exist $a,b in mathbbN_+ $ such that $fraca^2+ba+b^2=n.$Show that $n^2-1+nsqrtd$ is the fundamental unit in $mathbbZ[sqrtd]$ for all $ngeq 3$

Does the Idaho Potato Commission associate potato skins with healthy eating?

How can I prove that a state of equilibrium is unstable?

Car headlights in a world without electricity

Creating a script with console commands

Prodigo = pro + ago?

How seriously should I take size and weight limits of hand luggage?

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

Can this transistor (2n2222) take 6V on emitter-base? Am I reading datasheet incorrectly?

Another proof that dividing by 0 does not exist -- is it right?

What happens if you break a law in another country outside of that country?

Why did early computer designers eschew integers?

Are British MPs missing the point, with these 'Indicative Votes'?

Is it possible to create a QR code using text?

Mathematica command that allows it to read my intentions

What does this strange code stamp on my passport mean?

How badly should I try to prevent a user from XSSing themselves?

How can a day be of 24 hours?

What day is it again?

Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?

My boss doesn't want me to have a side project

How can I separate the number from the unit in argument?

How to show a landlord what we have in savings?

How to implement Comparable so it is consistent with identity-equality

Could you use a laser beam as a modulated carrier wave for radio signal?



For any $k in mathbbN$, there exist $s in mathbbN$ such that the expression $9s+3+2^k$ is a power of $2$



The Next CEO of Stack OverflowFinding $a,b$ such that $a^n + b^n $ is $(n+1)^th$ powerProof: For all integers $x$ and $y$, if $x^3+x = y^3+y$ then $x = y$Does there exist a $(m,n)inmathbb N$ such that $m^3-2^n=3$?disprove : $forall n in mathbbN exists m in mathbbN$ such that $n<m<n^2$Is there any palindromic power of $2$?Prove that there exists a multiple of $2016$, such that the multiple has only $4$ and $6$ as its digits.The Number Theoretic Statement is …For which of the following equations does it exist $s,t in mathbbZ$ so that the equation is satisfiedProve or disprove that, for any $n in mathbbN_+$, there exist $a,b in mathbbN_+ $ such that $fraca^2+ba+b^2=n.$Show that $n^2-1+nsqrtd$ is the fundamental unit in $mathbbZ[sqrtd]$ for all $ngeq 3$










1












$begingroup$


I have reason(empirical calculations) to think the following statement is true:



For any $k in mathbbN$, there exist $s in mathbbN$ such that the expression



$$9s+3+2^k$$



is a power of $2$.



To me it seems like a silly statement, but I don't know how I would go about proving it. Any ideas, or references?



THank you.










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    I have reason(empirical calculations) to think the following statement is true:



    For any $k in mathbbN$, there exist $s in mathbbN$ such that the expression



    $$9s+3+2^k$$



    is a power of $2$.



    To me it seems like a silly statement, but I don't know how I would go about proving it. Any ideas, or references?



    THank you.










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      I have reason(empirical calculations) to think the following statement is true:



      For any $k in mathbbN$, there exist $s in mathbbN$ such that the expression



      $$9s+3+2^k$$



      is a power of $2$.



      To me it seems like a silly statement, but I don't know how I would go about proving it. Any ideas, or references?



      THank you.










      share|cite|improve this question











      $endgroup$




      I have reason(empirical calculations) to think the following statement is true:



      For any $k in mathbbN$, there exist $s in mathbbN$ such that the expression



      $$9s+3+2^k$$



      is a power of $2$.



      To me it seems like a silly statement, but I don't know how I would go about proving it. Any ideas, or references?



      THank you.







      number-theory discrete-mathematics recreational-mathematics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday









      YuiTo Cheng

      2,1863937




      2,1863937










      asked yesterday









      ReverseFlowReverseFlow

      609513




      609513




















          6 Answers
          6






          active

          oldest

          votes


















          5












          $begingroup$

          The statement that $9s + 3 + 2^k$ is a power of $2$ for some $sinBbbN$ is equivalent to saying $2^k + 3 equiv 2^n pmod 9$ for some $ngt k$. Since the values of $2^kbmod 9$ are the periodic sequence $1,2,4,8,7,5,1,2,4,8,7,5,ldots$ consisting of all values which are not multiples of $3$, this is true.



          For example, take $k = 5$. Then $2^k + 3 = 35 equiv 8 pmod 9$ and the next power of $2$ which is congruent to $8$ is $2^9 = 512$. So in this case $s = (512 - 35)/9 = 53$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thank you all for the replies. I will choose this one as the answer as I find it the most concise and illuminating. Different approaches, such as Eric's down below are welcomed.
            $endgroup$
            – ReverseFlow
            yesterday


















          2












          $begingroup$

          $9cdot s+3+2^k=2^j+k Rightarrow 2^k(2^j-1)-3 equiv 0 mod 9 Rightarrow 2^k(2^j-1) equiv 3 mod 9$



          $2^k mod 9$ cycles through $2,4,8,7,5,1,$ etc. so $2^j-1 mod 9$ cycles through $1,3,7,6,4,0$ etc.



          For any residue of $2^k$ it is possible to find a residue of $2^j-1$ such that their product equals $3 mod 9$, viz: $2cdot 6; 4cdot 3; 8cdot 6; 7cdot 3; 5cdot 6; 1cdot 3$



          So your observation is true.



          NB As I typed this, I see that Fred H has given a similar answer.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Euler's Theorem tells us $2^6 equiv 1 pmod 9$ and direct calculation shows so



            $2^6k + i; i=0...5equiv 1,2,4,8,7,5 pmod 9$.



            So $2^m - 2^k equiv 3 pmod 9$ if



            $kequiv 0 pmod 6;2^kequiv 1pmod 9$ and $mequiv 2pmod 6; 2^mequiv 4pmod 9$.



            $kequiv 1 pmod 6;2^kequiv 2pmod 9$ and $mequiv 5pmod 6; 2^mequiv 5pmod 9$.



            $kequiv 2 pmod 6;2^kequiv 4pmod 9$ and $mequiv 4pmod 6; 2^mequiv 7pmod 9$.



            $kequiv 3 pmod 6;2^kequiv 8pmod 9$ and $mequiv 1pmod 6; 2^mequiv 2pmod 9$ (So $2^m - 2^k equiv 2-8equiv -6equiv 3 pmod 9$).



            $kequiv 4 pmod 6;2^kequiv 7pmod 9$ and $mequiv 0pmod 6; 2^mequiv 1pmod 9$.



            $kequiv 5 pmod 6;2^kequiv 5pmod 9$ and $mequiv 3pmod 6; 2^mequiv 9pmod 9$.



            So for any $k$ there will exist infinitely many $m > k$ (Actually we don't need $m > k$ as $s$ may be negative but... nice answers are nicer) so that $2^m - 2^k equiv 3 pmod 9$.



            So that means for any $k$ there will exist $s$ and $m$ (actually infinitely many $s$ and $m$) so that



            $2^m - 2^k = 9s + 3$ or



            $9s+3 + 2^k$ a power of $2$.



            (I take a dog for a walk and three people post a similar to identical answer. sigh. Anyway hopefully this answer may (or may not) provide a possible fresh take... There's always more than one way to do or explain things.)






            share|cite|improve this answer











            $endgroup$




















              1












              $begingroup$

              If $9s+3 = 3cdot 2^k$,
              this will work.



              Then
              $3s+1 = 2^k$,
              so $3|2^k-1$.



              This works for even $k$.



              More generally,
              it works if
              $9s+3 = (2^m-1)2^k$
              for some $m$.



              To get rid of the 3
              requires $m$ even,
              so write this as
              $9s+3
              = (4^m-1)2^k
              = 3sum_j=0^m-14^j2^k
              $

              or
              $3s+1
              = 2^ksum_j=0^m-14^j
              $
              .



              Mod 3,
              we want
              $1
              =2^ksum_j=0^m-14^j
              =2^km
              $

              so if
              $2^km = 1 bmod 3$
              we are done,
              and this can always be done.






              share|cite|improve this answer









              $endgroup$




















                1












                $begingroup$

                $$
                beginarrayc
                boldsymbollarge 2^k+3equiv2^mpmod9\
                beginarrayc
                kbmod6&2^k+3bmod9&2^kbmod9&mbmod6\hline
                0&4&1&2\
                1&5&2&5\
                2&7&4&4\
                3&2&8&1\
                4&1&7&0\
                5&8&5&3
                endarray
                endarray
                $$

                Since $phi(9)=6$, Euler's Theorem says that $2^6equiv1pmod9$; therefore, if we know $kbmod6$, we know $2^kbmod9$. Thus, we can compute columns $2$ and $3$ mod $9$ from column $1$. To compute column $4$ for row $A$, read column $2$ from row $A$, and find that value in column $3$ of row $B$ and read the value in column $1$ from row $B$ and put that value in column $4$ of row $A$. Then, for each row,
                $$
                2^k+3equiv2^mpmod9
                $$

                For example, $2^10+3equiv2^12pmod9$ because, from the table, $k=10equiv4pmod6$ and so $m=12equiv0pmod6$, so we can compute $s=frac2^12-2^10-39=341$ to get $2^10+3+9cdot341=2^12$.






                share|cite|improve this answer











                $endgroup$












                • $begingroup$
                  More words around that table would be incredibly useful. What does k mod 6 tell us, and what do the colors mean?
                  $endgroup$
                  – ReverseFlow
                  yesterday






                • 1




                  $begingroup$
                  @ReverseFlow: I have replaced the colors with a verbal description.
                  $endgroup$
                  – robjohn
                  yesterday


















                0












                $begingroup$

                Suppose $k in mathbbN = mathbbZ_>0$ is given.



                Set beginalign*
                s &= 2^k + frac13 left( (-2)^k+1 - 1 right) text, and \
                n &= (-1)^k+1 + k + 3 text.
                endalign*



                Then $s$ and $n$ are positive integers and
                $$ 9s + 3 + 2^k = 2^n text. $$



                This looks like a job for induction, but we can show it directly.



                The expression for $n$ is a sum of integers, so $n$ is an integer, and the value of the expression lies in $[k+3-1, k+3+1]$. Since $k > 0$, this entire interval contains only positive numbers, so $n$ is a positive integer.



                For $s$, note that $(-2)^k+1 - 1 cong 1^k+1 - 1 cong 1 - 1 cong 0 pmod3$, so the division by $3$ yields an integer. We wish to ensure $s > 0$, so beginalign*
                2^k + frac13 left( (-2)^k+1 - 1 right) overset?> 0 \
                2^k + frac13 left( (-1)^k+12^k+1 - 1 right) overset?> 0 \
                1 + frac13 left( (-1)^k+12^1 - 2^-k right) overset?> 0
                endalign*

                If $k$ is even, beginalign*
                1 + frac13 left( -2 - 2^-k right) overset?> 0 text,
                endalign*

                $-2 -2^-k in (-3,-2)$, so $1 + frac13 left( -2 - 2^-k right) in (0,1/3)$, all elements of which are positive, so $s$ is positive when $k$ is even. If $k$ is odd, beginalign*
                1 + frac13 left( 2 - 2^-k right) overset?> 0 text,
                endalign*

                $2 - 2^-k in (1,2)$, so $1 + frac13 left( 2 - 2^-k right) in (4/3, 5/3)$, all elements of which are positive, so $s$ is an integer when $k$ is odd. Therefore, $s$ is positive when $k$ is odd. Therefore, $s$ is always a positive integer.



                Plugging in the above expressions into the given equation, we have
                $$ 9 left( 2^k + frac13 left( (-2)^k+1 - 1 right) right) + 3 + 2^k = 2^(-1)^k+1 + k + 3 text. $$
                After a little manipulation, this is
                $$ 2^(-1)^k+1 + k + 2 = 5 cdot 2^k - 3(-2)^k text. tag1 $$



                First suppose $k$ is even, so $k = 2m$. Substituting this into (1) and simplifying a little, we have
                $$ 2^-1 + 2m + 2 = 2 cdot 2^2m text, $$
                a tautology.



                Then suppose $k$ is odd, so $k = 2m+1$. Sustituting this into (1) and simplifying a little, we have
                $$ 2^2m + 4 = 8 cdot 2^2m+1 text, $$
                a tautology.



                Therefore, the given $s$ and $n$ are positive integers which satisfy the given equation.



                Aside: The above choices for $s$ and $n$ do not exhaust the solution set. For instance $(k,s,n) = (2, 131,176,846,746,379,033,713, 70)$ is another solution. (This is implicit in the other answers that use the fact that the powers of $2$ are cyclic modulo $9$.)






                share|cite|improve this answer









                $endgroup$












                • $begingroup$
                  I get the feeling you are an analyst. :). Thank you for taking the time to write this, though I admit the other solutions are easier to digest.
                  $endgroup$
                  – ReverseFlow
                  yesterday











                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168962%2ffor-any-k-in-mathbbn-there-exist-s-in-mathbbn-such-that-the-express%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                6 Answers
                6






                active

                oldest

                votes








                6 Answers
                6






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                5












                $begingroup$

                The statement that $9s + 3 + 2^k$ is a power of $2$ for some $sinBbbN$ is equivalent to saying $2^k + 3 equiv 2^n pmod 9$ for some $ngt k$. Since the values of $2^kbmod 9$ are the periodic sequence $1,2,4,8,7,5,1,2,4,8,7,5,ldots$ consisting of all values which are not multiples of $3$, this is true.



                For example, take $k = 5$. Then $2^k + 3 = 35 equiv 8 pmod 9$ and the next power of $2$ which is congruent to $8$ is $2^9 = 512$. So in this case $s = (512 - 35)/9 = 53$.






                share|cite|improve this answer









                $endgroup$












                • $begingroup$
                  Thank you all for the replies. I will choose this one as the answer as I find it the most concise and illuminating. Different approaches, such as Eric's down below are welcomed.
                  $endgroup$
                  – ReverseFlow
                  yesterday















                5












                $begingroup$

                The statement that $9s + 3 + 2^k$ is a power of $2$ for some $sinBbbN$ is equivalent to saying $2^k + 3 equiv 2^n pmod 9$ for some $ngt k$. Since the values of $2^kbmod 9$ are the periodic sequence $1,2,4,8,7,5,1,2,4,8,7,5,ldots$ consisting of all values which are not multiples of $3$, this is true.



                For example, take $k = 5$. Then $2^k + 3 = 35 equiv 8 pmod 9$ and the next power of $2$ which is congruent to $8$ is $2^9 = 512$. So in this case $s = (512 - 35)/9 = 53$.






                share|cite|improve this answer









                $endgroup$












                • $begingroup$
                  Thank you all for the replies. I will choose this one as the answer as I find it the most concise and illuminating. Different approaches, such as Eric's down below are welcomed.
                  $endgroup$
                  – ReverseFlow
                  yesterday













                5












                5








                5





                $begingroup$

                The statement that $9s + 3 + 2^k$ is a power of $2$ for some $sinBbbN$ is equivalent to saying $2^k + 3 equiv 2^n pmod 9$ for some $ngt k$. Since the values of $2^kbmod 9$ are the periodic sequence $1,2,4,8,7,5,1,2,4,8,7,5,ldots$ consisting of all values which are not multiples of $3$, this is true.



                For example, take $k = 5$. Then $2^k + 3 = 35 equiv 8 pmod 9$ and the next power of $2$ which is congruent to $8$ is $2^9 = 512$. So in this case $s = (512 - 35)/9 = 53$.






                share|cite|improve this answer









                $endgroup$



                The statement that $9s + 3 + 2^k$ is a power of $2$ for some $sinBbbN$ is equivalent to saying $2^k + 3 equiv 2^n pmod 9$ for some $ngt k$. Since the values of $2^kbmod 9$ are the periodic sequence $1,2,4,8,7,5,1,2,4,8,7,5,ldots$ consisting of all values which are not multiples of $3$, this is true.



                For example, take $k = 5$. Then $2^k + 3 = 35 equiv 8 pmod 9$ and the next power of $2$ which is congruent to $8$ is $2^9 = 512$. So in this case $s = (512 - 35)/9 = 53$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered yesterday









                FredHFredH

                3,5101023




                3,5101023











                • $begingroup$
                  Thank you all for the replies. I will choose this one as the answer as I find it the most concise and illuminating. Different approaches, such as Eric's down below are welcomed.
                  $endgroup$
                  – ReverseFlow
                  yesterday
















                • $begingroup$
                  Thank you all for the replies. I will choose this one as the answer as I find it the most concise and illuminating. Different approaches, such as Eric's down below are welcomed.
                  $endgroup$
                  – ReverseFlow
                  yesterday















                $begingroup$
                Thank you all for the replies. I will choose this one as the answer as I find it the most concise and illuminating. Different approaches, such as Eric's down below are welcomed.
                $endgroup$
                – ReverseFlow
                yesterday




                $begingroup$
                Thank you all for the replies. I will choose this one as the answer as I find it the most concise and illuminating. Different approaches, such as Eric's down below are welcomed.
                $endgroup$
                – ReverseFlow
                yesterday











                2












                $begingroup$

                $9cdot s+3+2^k=2^j+k Rightarrow 2^k(2^j-1)-3 equiv 0 mod 9 Rightarrow 2^k(2^j-1) equiv 3 mod 9$



                $2^k mod 9$ cycles through $2,4,8,7,5,1,$ etc. so $2^j-1 mod 9$ cycles through $1,3,7,6,4,0$ etc.



                For any residue of $2^k$ it is possible to find a residue of $2^j-1$ such that their product equals $3 mod 9$, viz: $2cdot 6; 4cdot 3; 8cdot 6; 7cdot 3; 5cdot 6; 1cdot 3$



                So your observation is true.



                NB As I typed this, I see that Fred H has given a similar answer.






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  $9cdot s+3+2^k=2^j+k Rightarrow 2^k(2^j-1)-3 equiv 0 mod 9 Rightarrow 2^k(2^j-1) equiv 3 mod 9$



                  $2^k mod 9$ cycles through $2,4,8,7,5,1,$ etc. so $2^j-1 mod 9$ cycles through $1,3,7,6,4,0$ etc.



                  For any residue of $2^k$ it is possible to find a residue of $2^j-1$ such that their product equals $3 mod 9$, viz: $2cdot 6; 4cdot 3; 8cdot 6; 7cdot 3; 5cdot 6; 1cdot 3$



                  So your observation is true.



                  NB As I typed this, I see that Fred H has given a similar answer.






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    $9cdot s+3+2^k=2^j+k Rightarrow 2^k(2^j-1)-3 equiv 0 mod 9 Rightarrow 2^k(2^j-1) equiv 3 mod 9$



                    $2^k mod 9$ cycles through $2,4,8,7,5,1,$ etc. so $2^j-1 mod 9$ cycles through $1,3,7,6,4,0$ etc.



                    For any residue of $2^k$ it is possible to find a residue of $2^j-1$ such that their product equals $3 mod 9$, viz: $2cdot 6; 4cdot 3; 8cdot 6; 7cdot 3; 5cdot 6; 1cdot 3$



                    So your observation is true.



                    NB As I typed this, I see that Fred H has given a similar answer.






                    share|cite|improve this answer









                    $endgroup$



                    $9cdot s+3+2^k=2^j+k Rightarrow 2^k(2^j-1)-3 equiv 0 mod 9 Rightarrow 2^k(2^j-1) equiv 3 mod 9$



                    $2^k mod 9$ cycles through $2,4,8,7,5,1,$ etc. so $2^j-1 mod 9$ cycles through $1,3,7,6,4,0$ etc.



                    For any residue of $2^k$ it is possible to find a residue of $2^j-1$ such that their product equals $3 mod 9$, viz: $2cdot 6; 4cdot 3; 8cdot 6; 7cdot 3; 5cdot 6; 1cdot 3$



                    So your observation is true.



                    NB As I typed this, I see that Fred H has given a similar answer.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered yesterday









                    Keith BackmanKeith Backman

                    1,5441812




                    1,5441812





















                        2












                        $begingroup$

                        Euler's Theorem tells us $2^6 equiv 1 pmod 9$ and direct calculation shows so



                        $2^6k + i; i=0...5equiv 1,2,4,8,7,5 pmod 9$.



                        So $2^m - 2^k equiv 3 pmod 9$ if



                        $kequiv 0 pmod 6;2^kequiv 1pmod 9$ and $mequiv 2pmod 6; 2^mequiv 4pmod 9$.



                        $kequiv 1 pmod 6;2^kequiv 2pmod 9$ and $mequiv 5pmod 6; 2^mequiv 5pmod 9$.



                        $kequiv 2 pmod 6;2^kequiv 4pmod 9$ and $mequiv 4pmod 6; 2^mequiv 7pmod 9$.



                        $kequiv 3 pmod 6;2^kequiv 8pmod 9$ and $mequiv 1pmod 6; 2^mequiv 2pmod 9$ (So $2^m - 2^k equiv 2-8equiv -6equiv 3 pmod 9$).



                        $kequiv 4 pmod 6;2^kequiv 7pmod 9$ and $mequiv 0pmod 6; 2^mequiv 1pmod 9$.



                        $kequiv 5 pmod 6;2^kequiv 5pmod 9$ and $mequiv 3pmod 6; 2^mequiv 9pmod 9$.



                        So for any $k$ there will exist infinitely many $m > k$ (Actually we don't need $m > k$ as $s$ may be negative but... nice answers are nicer) so that $2^m - 2^k equiv 3 pmod 9$.



                        So that means for any $k$ there will exist $s$ and $m$ (actually infinitely many $s$ and $m$) so that



                        $2^m - 2^k = 9s + 3$ or



                        $9s+3 + 2^k$ a power of $2$.



                        (I take a dog for a walk and three people post a similar to identical answer. sigh. Anyway hopefully this answer may (or may not) provide a possible fresh take... There's always more than one way to do or explain things.)






                        share|cite|improve this answer











                        $endgroup$

















                          2












                          $begingroup$

                          Euler's Theorem tells us $2^6 equiv 1 pmod 9$ and direct calculation shows so



                          $2^6k + i; i=0...5equiv 1,2,4,8,7,5 pmod 9$.



                          So $2^m - 2^k equiv 3 pmod 9$ if



                          $kequiv 0 pmod 6;2^kequiv 1pmod 9$ and $mequiv 2pmod 6; 2^mequiv 4pmod 9$.



                          $kequiv 1 pmod 6;2^kequiv 2pmod 9$ and $mequiv 5pmod 6; 2^mequiv 5pmod 9$.



                          $kequiv 2 pmod 6;2^kequiv 4pmod 9$ and $mequiv 4pmod 6; 2^mequiv 7pmod 9$.



                          $kequiv 3 pmod 6;2^kequiv 8pmod 9$ and $mequiv 1pmod 6; 2^mequiv 2pmod 9$ (So $2^m - 2^k equiv 2-8equiv -6equiv 3 pmod 9$).



                          $kequiv 4 pmod 6;2^kequiv 7pmod 9$ and $mequiv 0pmod 6; 2^mequiv 1pmod 9$.



                          $kequiv 5 pmod 6;2^kequiv 5pmod 9$ and $mequiv 3pmod 6; 2^mequiv 9pmod 9$.



                          So for any $k$ there will exist infinitely many $m > k$ (Actually we don't need $m > k$ as $s$ may be negative but... nice answers are nicer) so that $2^m - 2^k equiv 3 pmod 9$.



                          So that means for any $k$ there will exist $s$ and $m$ (actually infinitely many $s$ and $m$) so that



                          $2^m - 2^k = 9s + 3$ or



                          $9s+3 + 2^k$ a power of $2$.



                          (I take a dog for a walk and three people post a similar to identical answer. sigh. Anyway hopefully this answer may (or may not) provide a possible fresh take... There's always more than one way to do or explain things.)






                          share|cite|improve this answer











                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            Euler's Theorem tells us $2^6 equiv 1 pmod 9$ and direct calculation shows so



                            $2^6k + i; i=0...5equiv 1,2,4,8,7,5 pmod 9$.



                            So $2^m - 2^k equiv 3 pmod 9$ if



                            $kequiv 0 pmod 6;2^kequiv 1pmod 9$ and $mequiv 2pmod 6; 2^mequiv 4pmod 9$.



                            $kequiv 1 pmod 6;2^kequiv 2pmod 9$ and $mequiv 5pmod 6; 2^mequiv 5pmod 9$.



                            $kequiv 2 pmod 6;2^kequiv 4pmod 9$ and $mequiv 4pmod 6; 2^mequiv 7pmod 9$.



                            $kequiv 3 pmod 6;2^kequiv 8pmod 9$ and $mequiv 1pmod 6; 2^mequiv 2pmod 9$ (So $2^m - 2^k equiv 2-8equiv -6equiv 3 pmod 9$).



                            $kequiv 4 pmod 6;2^kequiv 7pmod 9$ and $mequiv 0pmod 6; 2^mequiv 1pmod 9$.



                            $kequiv 5 pmod 6;2^kequiv 5pmod 9$ and $mequiv 3pmod 6; 2^mequiv 9pmod 9$.



                            So for any $k$ there will exist infinitely many $m > k$ (Actually we don't need $m > k$ as $s$ may be negative but... nice answers are nicer) so that $2^m - 2^k equiv 3 pmod 9$.



                            So that means for any $k$ there will exist $s$ and $m$ (actually infinitely many $s$ and $m$) so that



                            $2^m - 2^k = 9s + 3$ or



                            $9s+3 + 2^k$ a power of $2$.



                            (I take a dog for a walk and three people post a similar to identical answer. sigh. Anyway hopefully this answer may (or may not) provide a possible fresh take... There's always more than one way to do or explain things.)






                            share|cite|improve this answer











                            $endgroup$



                            Euler's Theorem tells us $2^6 equiv 1 pmod 9$ and direct calculation shows so



                            $2^6k + i; i=0...5equiv 1,2,4,8,7,5 pmod 9$.



                            So $2^m - 2^k equiv 3 pmod 9$ if



                            $kequiv 0 pmod 6;2^kequiv 1pmod 9$ and $mequiv 2pmod 6; 2^mequiv 4pmod 9$.



                            $kequiv 1 pmod 6;2^kequiv 2pmod 9$ and $mequiv 5pmod 6; 2^mequiv 5pmod 9$.



                            $kequiv 2 pmod 6;2^kequiv 4pmod 9$ and $mequiv 4pmod 6; 2^mequiv 7pmod 9$.



                            $kequiv 3 pmod 6;2^kequiv 8pmod 9$ and $mequiv 1pmod 6; 2^mequiv 2pmod 9$ (So $2^m - 2^k equiv 2-8equiv -6equiv 3 pmod 9$).



                            $kequiv 4 pmod 6;2^kequiv 7pmod 9$ and $mequiv 0pmod 6; 2^mequiv 1pmod 9$.



                            $kequiv 5 pmod 6;2^kequiv 5pmod 9$ and $mequiv 3pmod 6; 2^mequiv 9pmod 9$.



                            So for any $k$ there will exist infinitely many $m > k$ (Actually we don't need $m > k$ as $s$ may be negative but... nice answers are nicer) so that $2^m - 2^k equiv 3 pmod 9$.



                            So that means for any $k$ there will exist $s$ and $m$ (actually infinitely many $s$ and $m$) so that



                            $2^m - 2^k = 9s + 3$ or



                            $9s+3 + 2^k$ a power of $2$.



                            (I take a dog for a walk and three people post a similar to identical answer. sigh. Anyway hopefully this answer may (or may not) provide a possible fresh take... There's always more than one way to do or explain things.)







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited yesterday

























                            answered yesterday









                            fleabloodfleablood

                            73.7k22891




                            73.7k22891





















                                1












                                $begingroup$

                                If $9s+3 = 3cdot 2^k$,
                                this will work.



                                Then
                                $3s+1 = 2^k$,
                                so $3|2^k-1$.



                                This works for even $k$.



                                More generally,
                                it works if
                                $9s+3 = (2^m-1)2^k$
                                for some $m$.



                                To get rid of the 3
                                requires $m$ even,
                                so write this as
                                $9s+3
                                = (4^m-1)2^k
                                = 3sum_j=0^m-14^j2^k
                                $

                                or
                                $3s+1
                                = 2^ksum_j=0^m-14^j
                                $
                                .



                                Mod 3,
                                we want
                                $1
                                =2^ksum_j=0^m-14^j
                                =2^km
                                $

                                so if
                                $2^km = 1 bmod 3$
                                we are done,
                                and this can always be done.






                                share|cite|improve this answer









                                $endgroup$

















                                  1












                                  $begingroup$

                                  If $9s+3 = 3cdot 2^k$,
                                  this will work.



                                  Then
                                  $3s+1 = 2^k$,
                                  so $3|2^k-1$.



                                  This works for even $k$.



                                  More generally,
                                  it works if
                                  $9s+3 = (2^m-1)2^k$
                                  for some $m$.



                                  To get rid of the 3
                                  requires $m$ even,
                                  so write this as
                                  $9s+3
                                  = (4^m-1)2^k
                                  = 3sum_j=0^m-14^j2^k
                                  $

                                  or
                                  $3s+1
                                  = 2^ksum_j=0^m-14^j
                                  $
                                  .



                                  Mod 3,
                                  we want
                                  $1
                                  =2^ksum_j=0^m-14^j
                                  =2^km
                                  $

                                  so if
                                  $2^km = 1 bmod 3$
                                  we are done,
                                  and this can always be done.






                                  share|cite|improve this answer









                                  $endgroup$















                                    1












                                    1








                                    1





                                    $begingroup$

                                    If $9s+3 = 3cdot 2^k$,
                                    this will work.



                                    Then
                                    $3s+1 = 2^k$,
                                    so $3|2^k-1$.



                                    This works for even $k$.



                                    More generally,
                                    it works if
                                    $9s+3 = (2^m-1)2^k$
                                    for some $m$.



                                    To get rid of the 3
                                    requires $m$ even,
                                    so write this as
                                    $9s+3
                                    = (4^m-1)2^k
                                    = 3sum_j=0^m-14^j2^k
                                    $

                                    or
                                    $3s+1
                                    = 2^ksum_j=0^m-14^j
                                    $
                                    .



                                    Mod 3,
                                    we want
                                    $1
                                    =2^ksum_j=0^m-14^j
                                    =2^km
                                    $

                                    so if
                                    $2^km = 1 bmod 3$
                                    we are done,
                                    and this can always be done.






                                    share|cite|improve this answer









                                    $endgroup$



                                    If $9s+3 = 3cdot 2^k$,
                                    this will work.



                                    Then
                                    $3s+1 = 2^k$,
                                    so $3|2^k-1$.



                                    This works for even $k$.



                                    More generally,
                                    it works if
                                    $9s+3 = (2^m-1)2^k$
                                    for some $m$.



                                    To get rid of the 3
                                    requires $m$ even,
                                    so write this as
                                    $9s+3
                                    = (4^m-1)2^k
                                    = 3sum_j=0^m-14^j2^k
                                    $

                                    or
                                    $3s+1
                                    = 2^ksum_j=0^m-14^j
                                    $
                                    .



                                    Mod 3,
                                    we want
                                    $1
                                    =2^ksum_j=0^m-14^j
                                    =2^km
                                    $

                                    so if
                                    $2^km = 1 bmod 3$
                                    we are done,
                                    and this can always be done.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered yesterday









                                    marty cohenmarty cohen

                                    74.9k549130




                                    74.9k549130





















                                        1












                                        $begingroup$

                                        $$
                                        beginarrayc
                                        boldsymbollarge 2^k+3equiv2^mpmod9\
                                        beginarrayc
                                        kbmod6&2^k+3bmod9&2^kbmod9&mbmod6\hline
                                        0&4&1&2\
                                        1&5&2&5\
                                        2&7&4&4\
                                        3&2&8&1\
                                        4&1&7&0\
                                        5&8&5&3
                                        endarray
                                        endarray
                                        $$

                                        Since $phi(9)=6$, Euler's Theorem says that $2^6equiv1pmod9$; therefore, if we know $kbmod6$, we know $2^kbmod9$. Thus, we can compute columns $2$ and $3$ mod $9$ from column $1$. To compute column $4$ for row $A$, read column $2$ from row $A$, and find that value in column $3$ of row $B$ and read the value in column $1$ from row $B$ and put that value in column $4$ of row $A$. Then, for each row,
                                        $$
                                        2^k+3equiv2^mpmod9
                                        $$

                                        For example, $2^10+3equiv2^12pmod9$ because, from the table, $k=10equiv4pmod6$ and so $m=12equiv0pmod6$, so we can compute $s=frac2^12-2^10-39=341$ to get $2^10+3+9cdot341=2^12$.






                                        share|cite|improve this answer











                                        $endgroup$












                                        • $begingroup$
                                          More words around that table would be incredibly useful. What does k mod 6 tell us, and what do the colors mean?
                                          $endgroup$
                                          – ReverseFlow
                                          yesterday






                                        • 1




                                          $begingroup$
                                          @ReverseFlow: I have replaced the colors with a verbal description.
                                          $endgroup$
                                          – robjohn
                                          yesterday















                                        1












                                        $begingroup$

                                        $$
                                        beginarrayc
                                        boldsymbollarge 2^k+3equiv2^mpmod9\
                                        beginarrayc
                                        kbmod6&2^k+3bmod9&2^kbmod9&mbmod6\hline
                                        0&4&1&2\
                                        1&5&2&5\
                                        2&7&4&4\
                                        3&2&8&1\
                                        4&1&7&0\
                                        5&8&5&3
                                        endarray
                                        endarray
                                        $$

                                        Since $phi(9)=6$, Euler's Theorem says that $2^6equiv1pmod9$; therefore, if we know $kbmod6$, we know $2^kbmod9$. Thus, we can compute columns $2$ and $3$ mod $9$ from column $1$. To compute column $4$ for row $A$, read column $2$ from row $A$, and find that value in column $3$ of row $B$ and read the value in column $1$ from row $B$ and put that value in column $4$ of row $A$. Then, for each row,
                                        $$
                                        2^k+3equiv2^mpmod9
                                        $$

                                        For example, $2^10+3equiv2^12pmod9$ because, from the table, $k=10equiv4pmod6$ and so $m=12equiv0pmod6$, so we can compute $s=frac2^12-2^10-39=341$ to get $2^10+3+9cdot341=2^12$.






                                        share|cite|improve this answer











                                        $endgroup$












                                        • $begingroup$
                                          More words around that table would be incredibly useful. What does k mod 6 tell us, and what do the colors mean?
                                          $endgroup$
                                          – ReverseFlow
                                          yesterday






                                        • 1




                                          $begingroup$
                                          @ReverseFlow: I have replaced the colors with a verbal description.
                                          $endgroup$
                                          – robjohn
                                          yesterday













                                        1












                                        1








                                        1





                                        $begingroup$

                                        $$
                                        beginarrayc
                                        boldsymbollarge 2^k+3equiv2^mpmod9\
                                        beginarrayc
                                        kbmod6&2^k+3bmod9&2^kbmod9&mbmod6\hline
                                        0&4&1&2\
                                        1&5&2&5\
                                        2&7&4&4\
                                        3&2&8&1\
                                        4&1&7&0\
                                        5&8&5&3
                                        endarray
                                        endarray
                                        $$

                                        Since $phi(9)=6$, Euler's Theorem says that $2^6equiv1pmod9$; therefore, if we know $kbmod6$, we know $2^kbmod9$. Thus, we can compute columns $2$ and $3$ mod $9$ from column $1$. To compute column $4$ for row $A$, read column $2$ from row $A$, and find that value in column $3$ of row $B$ and read the value in column $1$ from row $B$ and put that value in column $4$ of row $A$. Then, for each row,
                                        $$
                                        2^k+3equiv2^mpmod9
                                        $$

                                        For example, $2^10+3equiv2^12pmod9$ because, from the table, $k=10equiv4pmod6$ and so $m=12equiv0pmod6$, so we can compute $s=frac2^12-2^10-39=341$ to get $2^10+3+9cdot341=2^12$.






                                        share|cite|improve this answer











                                        $endgroup$



                                        $$
                                        beginarrayc
                                        boldsymbollarge 2^k+3equiv2^mpmod9\
                                        beginarrayc
                                        kbmod6&2^k+3bmod9&2^kbmod9&mbmod6\hline
                                        0&4&1&2\
                                        1&5&2&5\
                                        2&7&4&4\
                                        3&2&8&1\
                                        4&1&7&0\
                                        5&8&5&3
                                        endarray
                                        endarray
                                        $$

                                        Since $phi(9)=6$, Euler's Theorem says that $2^6equiv1pmod9$; therefore, if we know $kbmod6$, we know $2^kbmod9$. Thus, we can compute columns $2$ and $3$ mod $9$ from column $1$. To compute column $4$ for row $A$, read column $2$ from row $A$, and find that value in column $3$ of row $B$ and read the value in column $1$ from row $B$ and put that value in column $4$ of row $A$. Then, for each row,
                                        $$
                                        2^k+3equiv2^mpmod9
                                        $$

                                        For example, $2^10+3equiv2^12pmod9$ because, from the table, $k=10equiv4pmod6$ and so $m=12equiv0pmod6$, so we can compute $s=frac2^12-2^10-39=341$ to get $2^10+3+9cdot341=2^12$.







                                        share|cite|improve this answer














                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited yesterday

























                                        answered yesterday









                                        robjohnrobjohn

                                        270k27312640




                                        270k27312640











                                        • $begingroup$
                                          More words around that table would be incredibly useful. What does k mod 6 tell us, and what do the colors mean?
                                          $endgroup$
                                          – ReverseFlow
                                          yesterday






                                        • 1




                                          $begingroup$
                                          @ReverseFlow: I have replaced the colors with a verbal description.
                                          $endgroup$
                                          – robjohn
                                          yesterday
















                                        • $begingroup$
                                          More words around that table would be incredibly useful. What does k mod 6 tell us, and what do the colors mean?
                                          $endgroup$
                                          – ReverseFlow
                                          yesterday






                                        • 1




                                          $begingroup$
                                          @ReverseFlow: I have replaced the colors with a verbal description.
                                          $endgroup$
                                          – robjohn
                                          yesterday















                                        $begingroup$
                                        More words around that table would be incredibly useful. What does k mod 6 tell us, and what do the colors mean?
                                        $endgroup$
                                        – ReverseFlow
                                        yesterday




                                        $begingroup$
                                        More words around that table would be incredibly useful. What does k mod 6 tell us, and what do the colors mean?
                                        $endgroup$
                                        – ReverseFlow
                                        yesterday




                                        1




                                        1




                                        $begingroup$
                                        @ReverseFlow: I have replaced the colors with a verbal description.
                                        $endgroup$
                                        – robjohn
                                        yesterday




                                        $begingroup$
                                        @ReverseFlow: I have replaced the colors with a verbal description.
                                        $endgroup$
                                        – robjohn
                                        yesterday











                                        0












                                        $begingroup$

                                        Suppose $k in mathbbN = mathbbZ_>0$ is given.



                                        Set beginalign*
                                        s &= 2^k + frac13 left( (-2)^k+1 - 1 right) text, and \
                                        n &= (-1)^k+1 + k + 3 text.
                                        endalign*



                                        Then $s$ and $n$ are positive integers and
                                        $$ 9s + 3 + 2^k = 2^n text. $$



                                        This looks like a job for induction, but we can show it directly.



                                        The expression for $n$ is a sum of integers, so $n$ is an integer, and the value of the expression lies in $[k+3-1, k+3+1]$. Since $k > 0$, this entire interval contains only positive numbers, so $n$ is a positive integer.



                                        For $s$, note that $(-2)^k+1 - 1 cong 1^k+1 - 1 cong 1 - 1 cong 0 pmod3$, so the division by $3$ yields an integer. We wish to ensure $s > 0$, so beginalign*
                                        2^k + frac13 left( (-2)^k+1 - 1 right) overset?> 0 \
                                        2^k + frac13 left( (-1)^k+12^k+1 - 1 right) overset?> 0 \
                                        1 + frac13 left( (-1)^k+12^1 - 2^-k right) overset?> 0
                                        endalign*

                                        If $k$ is even, beginalign*
                                        1 + frac13 left( -2 - 2^-k right) overset?> 0 text,
                                        endalign*

                                        $-2 -2^-k in (-3,-2)$, so $1 + frac13 left( -2 - 2^-k right) in (0,1/3)$, all elements of which are positive, so $s$ is positive when $k$ is even. If $k$ is odd, beginalign*
                                        1 + frac13 left( 2 - 2^-k right) overset?> 0 text,
                                        endalign*

                                        $2 - 2^-k in (1,2)$, so $1 + frac13 left( 2 - 2^-k right) in (4/3, 5/3)$, all elements of which are positive, so $s$ is an integer when $k$ is odd. Therefore, $s$ is positive when $k$ is odd. Therefore, $s$ is always a positive integer.



                                        Plugging in the above expressions into the given equation, we have
                                        $$ 9 left( 2^k + frac13 left( (-2)^k+1 - 1 right) right) + 3 + 2^k = 2^(-1)^k+1 + k + 3 text. $$
                                        After a little manipulation, this is
                                        $$ 2^(-1)^k+1 + k + 2 = 5 cdot 2^k - 3(-2)^k text. tag1 $$



                                        First suppose $k$ is even, so $k = 2m$. Substituting this into (1) and simplifying a little, we have
                                        $$ 2^-1 + 2m + 2 = 2 cdot 2^2m text, $$
                                        a tautology.



                                        Then suppose $k$ is odd, so $k = 2m+1$. Sustituting this into (1) and simplifying a little, we have
                                        $$ 2^2m + 4 = 8 cdot 2^2m+1 text, $$
                                        a tautology.



                                        Therefore, the given $s$ and $n$ are positive integers which satisfy the given equation.



                                        Aside: The above choices for $s$ and $n$ do not exhaust the solution set. For instance $(k,s,n) = (2, 131,176,846,746,379,033,713, 70)$ is another solution. (This is implicit in the other answers that use the fact that the powers of $2$ are cyclic modulo $9$.)






                                        share|cite|improve this answer









                                        $endgroup$












                                        • $begingroup$
                                          I get the feeling you are an analyst. :). Thank you for taking the time to write this, though I admit the other solutions are easier to digest.
                                          $endgroup$
                                          – ReverseFlow
                                          yesterday















                                        0












                                        $begingroup$

                                        Suppose $k in mathbbN = mathbbZ_>0$ is given.



                                        Set beginalign*
                                        s &= 2^k + frac13 left( (-2)^k+1 - 1 right) text, and \
                                        n &= (-1)^k+1 + k + 3 text.
                                        endalign*



                                        Then $s$ and $n$ are positive integers and
                                        $$ 9s + 3 + 2^k = 2^n text. $$



                                        This looks like a job for induction, but we can show it directly.



                                        The expression for $n$ is a sum of integers, so $n$ is an integer, and the value of the expression lies in $[k+3-1, k+3+1]$. Since $k > 0$, this entire interval contains only positive numbers, so $n$ is a positive integer.



                                        For $s$, note that $(-2)^k+1 - 1 cong 1^k+1 - 1 cong 1 - 1 cong 0 pmod3$, so the division by $3$ yields an integer. We wish to ensure $s > 0$, so beginalign*
                                        2^k + frac13 left( (-2)^k+1 - 1 right) overset?> 0 \
                                        2^k + frac13 left( (-1)^k+12^k+1 - 1 right) overset?> 0 \
                                        1 + frac13 left( (-1)^k+12^1 - 2^-k right) overset?> 0
                                        endalign*

                                        If $k$ is even, beginalign*
                                        1 + frac13 left( -2 - 2^-k right) overset?> 0 text,
                                        endalign*

                                        $-2 -2^-k in (-3,-2)$, so $1 + frac13 left( -2 - 2^-k right) in (0,1/3)$, all elements of which are positive, so $s$ is positive when $k$ is even. If $k$ is odd, beginalign*
                                        1 + frac13 left( 2 - 2^-k right) overset?> 0 text,
                                        endalign*

                                        $2 - 2^-k in (1,2)$, so $1 + frac13 left( 2 - 2^-k right) in (4/3, 5/3)$, all elements of which are positive, so $s$ is an integer when $k$ is odd. Therefore, $s$ is positive when $k$ is odd. Therefore, $s$ is always a positive integer.



                                        Plugging in the above expressions into the given equation, we have
                                        $$ 9 left( 2^k + frac13 left( (-2)^k+1 - 1 right) right) + 3 + 2^k = 2^(-1)^k+1 + k + 3 text. $$
                                        After a little manipulation, this is
                                        $$ 2^(-1)^k+1 + k + 2 = 5 cdot 2^k - 3(-2)^k text. tag1 $$



                                        First suppose $k$ is even, so $k = 2m$. Substituting this into (1) and simplifying a little, we have
                                        $$ 2^-1 + 2m + 2 = 2 cdot 2^2m text, $$
                                        a tautology.



                                        Then suppose $k$ is odd, so $k = 2m+1$. Sustituting this into (1) and simplifying a little, we have
                                        $$ 2^2m + 4 = 8 cdot 2^2m+1 text, $$
                                        a tautology.



                                        Therefore, the given $s$ and $n$ are positive integers which satisfy the given equation.



                                        Aside: The above choices for $s$ and $n$ do not exhaust the solution set. For instance $(k,s,n) = (2, 131,176,846,746,379,033,713, 70)$ is another solution. (This is implicit in the other answers that use the fact that the powers of $2$ are cyclic modulo $9$.)






                                        share|cite|improve this answer









                                        $endgroup$












                                        • $begingroup$
                                          I get the feeling you are an analyst. :). Thank you for taking the time to write this, though I admit the other solutions are easier to digest.
                                          $endgroup$
                                          – ReverseFlow
                                          yesterday













                                        0












                                        0








                                        0





                                        $begingroup$

                                        Suppose $k in mathbbN = mathbbZ_>0$ is given.



                                        Set beginalign*
                                        s &= 2^k + frac13 left( (-2)^k+1 - 1 right) text, and \
                                        n &= (-1)^k+1 + k + 3 text.
                                        endalign*



                                        Then $s$ and $n$ are positive integers and
                                        $$ 9s + 3 + 2^k = 2^n text. $$



                                        This looks like a job for induction, but we can show it directly.



                                        The expression for $n$ is a sum of integers, so $n$ is an integer, and the value of the expression lies in $[k+3-1, k+3+1]$. Since $k > 0$, this entire interval contains only positive numbers, so $n$ is a positive integer.



                                        For $s$, note that $(-2)^k+1 - 1 cong 1^k+1 - 1 cong 1 - 1 cong 0 pmod3$, so the division by $3$ yields an integer. We wish to ensure $s > 0$, so beginalign*
                                        2^k + frac13 left( (-2)^k+1 - 1 right) overset?> 0 \
                                        2^k + frac13 left( (-1)^k+12^k+1 - 1 right) overset?> 0 \
                                        1 + frac13 left( (-1)^k+12^1 - 2^-k right) overset?> 0
                                        endalign*

                                        If $k$ is even, beginalign*
                                        1 + frac13 left( -2 - 2^-k right) overset?> 0 text,
                                        endalign*

                                        $-2 -2^-k in (-3,-2)$, so $1 + frac13 left( -2 - 2^-k right) in (0,1/3)$, all elements of which are positive, so $s$ is positive when $k$ is even. If $k$ is odd, beginalign*
                                        1 + frac13 left( 2 - 2^-k right) overset?> 0 text,
                                        endalign*

                                        $2 - 2^-k in (1,2)$, so $1 + frac13 left( 2 - 2^-k right) in (4/3, 5/3)$, all elements of which are positive, so $s$ is an integer when $k$ is odd. Therefore, $s$ is positive when $k$ is odd. Therefore, $s$ is always a positive integer.



                                        Plugging in the above expressions into the given equation, we have
                                        $$ 9 left( 2^k + frac13 left( (-2)^k+1 - 1 right) right) + 3 + 2^k = 2^(-1)^k+1 + k + 3 text. $$
                                        After a little manipulation, this is
                                        $$ 2^(-1)^k+1 + k + 2 = 5 cdot 2^k - 3(-2)^k text. tag1 $$



                                        First suppose $k$ is even, so $k = 2m$. Substituting this into (1) and simplifying a little, we have
                                        $$ 2^-1 + 2m + 2 = 2 cdot 2^2m text, $$
                                        a tautology.



                                        Then suppose $k$ is odd, so $k = 2m+1$. Sustituting this into (1) and simplifying a little, we have
                                        $$ 2^2m + 4 = 8 cdot 2^2m+1 text, $$
                                        a tautology.



                                        Therefore, the given $s$ and $n$ are positive integers which satisfy the given equation.



                                        Aside: The above choices for $s$ and $n$ do not exhaust the solution set. For instance $(k,s,n) = (2, 131,176,846,746,379,033,713, 70)$ is another solution. (This is implicit in the other answers that use the fact that the powers of $2$ are cyclic modulo $9$.)






                                        share|cite|improve this answer









                                        $endgroup$



                                        Suppose $k in mathbbN = mathbbZ_>0$ is given.



                                        Set beginalign*
                                        s &= 2^k + frac13 left( (-2)^k+1 - 1 right) text, and \
                                        n &= (-1)^k+1 + k + 3 text.
                                        endalign*



                                        Then $s$ and $n$ are positive integers and
                                        $$ 9s + 3 + 2^k = 2^n text. $$



                                        This looks like a job for induction, but we can show it directly.



                                        The expression for $n$ is a sum of integers, so $n$ is an integer, and the value of the expression lies in $[k+3-1, k+3+1]$. Since $k > 0$, this entire interval contains only positive numbers, so $n$ is a positive integer.



                                        For $s$, note that $(-2)^k+1 - 1 cong 1^k+1 - 1 cong 1 - 1 cong 0 pmod3$, so the division by $3$ yields an integer. We wish to ensure $s > 0$, so beginalign*
                                        2^k + frac13 left( (-2)^k+1 - 1 right) overset?> 0 \
                                        2^k + frac13 left( (-1)^k+12^k+1 - 1 right) overset?> 0 \
                                        1 + frac13 left( (-1)^k+12^1 - 2^-k right) overset?> 0
                                        endalign*

                                        If $k$ is even, beginalign*
                                        1 + frac13 left( -2 - 2^-k right) overset?> 0 text,
                                        endalign*

                                        $-2 -2^-k in (-3,-2)$, so $1 + frac13 left( -2 - 2^-k right) in (0,1/3)$, all elements of which are positive, so $s$ is positive when $k$ is even. If $k$ is odd, beginalign*
                                        1 + frac13 left( 2 - 2^-k right) overset?> 0 text,
                                        endalign*

                                        $2 - 2^-k in (1,2)$, so $1 + frac13 left( 2 - 2^-k right) in (4/3, 5/3)$, all elements of which are positive, so $s$ is an integer when $k$ is odd. Therefore, $s$ is positive when $k$ is odd. Therefore, $s$ is always a positive integer.



                                        Plugging in the above expressions into the given equation, we have
                                        $$ 9 left( 2^k + frac13 left( (-2)^k+1 - 1 right) right) + 3 + 2^k = 2^(-1)^k+1 + k + 3 text. $$
                                        After a little manipulation, this is
                                        $$ 2^(-1)^k+1 + k + 2 = 5 cdot 2^k - 3(-2)^k text. tag1 $$



                                        First suppose $k$ is even, so $k = 2m$. Substituting this into (1) and simplifying a little, we have
                                        $$ 2^-1 + 2m + 2 = 2 cdot 2^2m text, $$
                                        a tautology.



                                        Then suppose $k$ is odd, so $k = 2m+1$. Sustituting this into (1) and simplifying a little, we have
                                        $$ 2^2m + 4 = 8 cdot 2^2m+1 text, $$
                                        a tautology.



                                        Therefore, the given $s$ and $n$ are positive integers which satisfy the given equation.



                                        Aside: The above choices for $s$ and $n$ do not exhaust the solution set. For instance $(k,s,n) = (2, 131,176,846,746,379,033,713, 70)$ is another solution. (This is implicit in the other answers that use the fact that the powers of $2$ are cyclic modulo $9$.)







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered yesterday









                                        Eric TowersEric Towers

                                        33.3k22370




                                        33.3k22370











                                        • $begingroup$
                                          I get the feeling you are an analyst. :). Thank you for taking the time to write this, though I admit the other solutions are easier to digest.
                                          $endgroup$
                                          – ReverseFlow
                                          yesterday
















                                        • $begingroup$
                                          I get the feeling you are an analyst. :). Thank you for taking the time to write this, though I admit the other solutions are easier to digest.
                                          $endgroup$
                                          – ReverseFlow
                                          yesterday















                                        $begingroup$
                                        I get the feeling you are an analyst. :). Thank you for taking the time to write this, though I admit the other solutions are easier to digest.
                                        $endgroup$
                                        – ReverseFlow
                                        yesterday




                                        $begingroup$
                                        I get the feeling you are an analyst. :). Thank you for taking the time to write this, though I admit the other solutions are easier to digest.
                                        $endgroup$
                                        – ReverseFlow
                                        yesterday

















                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168962%2ffor-any-k-in-mathbbn-there-exist-s-in-mathbbn-such-that-the-express%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                                        Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                                        Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020