Purpose of level-shifter with same in and out voltages The Next CEO of Stack OverflowCan I use a voltage divider circuit instead of a level shifter here?Is it safe to use a bus buffer as level shifter?Why is the MISO not level shifted in this circuit?Level shifter circuit with 50 V outputBi-Directional Level Shifter Circuit with pull-down resistorsLogic Level ShifterDo I need a level shifter with an open drain outputLevel Shifter Issue with GroundHow to connect a CD40109BE Voltage Level ShifterWhat's wrong with this single-transistor level-shifter?

What steps are necessary to read a Modern SSD in Medieval Europe?

Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?

Why doesn't Shulchan Aruch include the laws of destroying fruit trees?

How to unfasten electrical subpanel attached with ramset

Calculate the Mean mean of two numbers

Is it a bad idea to plug the other end of ESD strap to wall ground?

Another proof that dividing by 0 does not exist -- is it right?

How exploitable/balanced is this homebrew spell: Spell Permanency?

Does Germany produce more waste than the US?

Find a path from s to t using as few red nodes as possible

Is it OK to decorate a log book cover?

How can I separate the number from the unit in argument?

Upgrading From a 9 Speed Sora Derailleur?

Calculating discount not working

Creating a script with console commands

How should I connect my cat5 cable to connectors having an orange-green line?

What did the word "leisure" mean in late 18th Century usage?

Are British MPs missing the point, with these 'Indicative Votes'?

Compensation for working overtime on Saturdays

How to find if SQL server backup is encrypted with TDE without restoring the backup

That's an odd coin - I wonder why

Why does freezing point matter when picking cooler ice packs?

How to show a landlord what we have in savings?

Which acid/base does a strong base/acid react when added to a buffer solution?



Purpose of level-shifter with same in and out voltages



The Next CEO of Stack OverflowCan I use a voltage divider circuit instead of a level shifter here?Is it safe to use a bus buffer as level shifter?Why is the MISO not level shifted in this circuit?Level shifter circuit with 50 V outputBi-Directional Level Shifter Circuit with pull-down resistorsLogic Level ShifterDo I need a level shifter with an open drain outputLevel Shifter Issue with GroundHow to connect a CD40109BE Voltage Level ShifterWhat's wrong with this single-transistor level-shifter?










3












$begingroup$


I am looking at a schematic for the Pixhawk 2 board (page 3).



The UART ports on the microcontroller are sent through a level-shifter chip (TXS0108) where the input voltage is the same as the output voltage. What benefit does this provide?



enter image description here










share|improve this question









$endgroup$
















    3












    $begingroup$


    I am looking at a schematic for the Pixhawk 2 board (page 3).



    The UART ports on the microcontroller are sent through a level-shifter chip (TXS0108) where the input voltage is the same as the output voltage. What benefit does this provide?



    enter image description here










    share|improve this question









    $endgroup$














      3












      3








      3





      $begingroup$


      I am looking at a schematic for the Pixhawk 2 board (page 3).



      The UART ports on the microcontroller are sent through a level-shifter chip (TXS0108) where the input voltage is the same as the output voltage. What benefit does this provide?



      enter image description here










      share|improve this question









      $endgroup$




      I am looking at a schematic for the Pixhawk 2 board (page 3).



      The UART ports on the microcontroller are sent through a level-shifter chip (TXS0108) where the input voltage is the same as the output voltage. What benefit does this provide?



      enter image description here







      microcontroller digital-logic level-shifting






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked yesterday









      user8908459user8908459

      32829




      32829




















          4 Answers
          4






          active

          oldest

          votes


















          1












          $begingroup$

          The level shifter is used not only to "shift" the logic levels of a signal, but also to lower the impedance of its source and increase its current drive capability in order to drive heavier loads without going out of specifications: in this case, the higher impedance output UART is sent to out the microcontroller board via the TXS0108 probably to rise its output drive capability.






          share|improve this answer









          $endgroup$












          • $begingroup$
            I have never seen another design where the UART is buffered. Do you think this is only necessary since the connection leaves the board and the external impedance is unknown?
            $endgroup$
            – user8908459
            yesterday










          • $begingroup$
            @user8908459 Yes, I think so: perhaps the designer(s) tried to make the UART output as more independent as possible from the unknown external impedance. From the datasheet I see that the absolute maximum rating of output current per output pin is $pm50mathrmmA$, which somewhat allows some resistance to overload.
            $endgroup$
            – Daniele Tampieri
            yesterday











          • $begingroup$
            @user8908459 Perhaps you could check my hypothesis is correct by looking at the output capability of the UART microcontroller outputs. If this is lower than the one available from the TSX0108, perhaps my hypothesis is correct.
            $endgroup$
            – Daniele Tampieri
            yesterday






          • 1




            $begingroup$
            Is it typical to send UART interfaces off-board? I generally think of RS-232/422 being more appropriate for this.
            $endgroup$
            – user8908459
            yesterday






          • 1




            $begingroup$
            Per you previous comment, I verified that the microcontroller pins source less current (25mA) than the TSX0108 (50mA)
            $endgroup$
            – user8908459
            yesterday


















          11












          $begingroup$

          On the full schematic there is an interesting note that starts:-




          due to the serial lines being able to back power the cpu...




          The STM32F407 MCU is only rated for an absolute maximum of 5mA injected current per pin (-5mA, +0mA on 5V tolerant pins), so if it was powered through a UART pin it could easily be damaged. The TXS0108 level shifter is rated for 50mA per input, so it is less likely to be damaged by eg. connecting an RS232 serial device (which might put out +-12V at 15mA or more).



          Another reason for buffering the serial port lines could be to make the MCU more tolerant of EMI. Autopilots are often used in harsh environments with nearby rf transmitters and high power brushless motors. An EMI induced glitch that caused the MCU to freeze or go crazy could crash the drone before it had time to recover.






          share|improve this answer









          $endgroup$




















            1












            $begingroup$

            The only obvious thing (other than buffering) I see is that the I/O can be disabled via a control line Level_Shift Enable.



            When that line is low the outputs are high-impedance, so it acts as a bidirectional tri-state buffer.






            share|improve this answer











            $endgroup$












            • $begingroup$
              On page 1, there is a circuit which permanently ties the Level_Shift_Enable line high, so there is no way to disable the output.
              $endgroup$
              – user8908459
              yesterday






            • 2




              $begingroup$
              It will provide buffering which might be in play here. The termination resistors imply they're worried about ringing.
              $endgroup$
              – Spehro Pefhany
              yesterday










            • $begingroup$
              Oh, I think I see now. In this system, the serial devices may power up before the microcontroller. This chip will protect the inputs from becoming back-biased before power is applied to the microcontroller.
              $endgroup$
              – user8908459
              yesterday










            • $begingroup$
              I looked for that first, but am not sure that's the reason- the inputs don't seem to permit inputs above the power supply (some chips do allow that).
              $endgroup$
              – Spehro Pefhany
              yesterday










            • $begingroup$
              There are two voltages here: a 5V line and a 3.3V line. The 5V line powers the peripherals. It is also the input for the LDO (U5001) which provides 3.3V on the FMU-VDD_3V3 line. The 5V line comes up first meaning that the peripherals could be driving the IO pins before the microcontroller power supply is at full output.
              $endgroup$
              – user8908459
              yesterday


















            1












            $begingroup$

            The other answers do not make sense. The output impedance of a microcontroller pin is about 30 ohms: perfectly capable of driving the 120 ohm series resistors.
            Also, I have not seen a microcontroller where you don't have tristate control in the chip.
            I suspect historical reasons: in the past it was level shift to 5V,which has evolved to levelshift to 3.3V, but to reduce impact on the layout the levelshifter was left in place.






            share|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("schematics", function ()
              StackExchange.schematics.init();
              );
              , "cicuitlab");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "135"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f429927%2fpurpose-of-level-shifter-with-same-in-and-out-voltages%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              4 Answers
              4






              active

              oldest

              votes








              4 Answers
              4






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              The level shifter is used not only to "shift" the logic levels of a signal, but also to lower the impedance of its source and increase its current drive capability in order to drive heavier loads without going out of specifications: in this case, the higher impedance output UART is sent to out the microcontroller board via the TXS0108 probably to rise its output drive capability.






              share|improve this answer









              $endgroup$












              • $begingroup$
                I have never seen another design where the UART is buffered. Do you think this is only necessary since the connection leaves the board and the external impedance is unknown?
                $endgroup$
                – user8908459
                yesterday










              • $begingroup$
                @user8908459 Yes, I think so: perhaps the designer(s) tried to make the UART output as more independent as possible from the unknown external impedance. From the datasheet I see that the absolute maximum rating of output current per output pin is $pm50mathrmmA$, which somewhat allows some resistance to overload.
                $endgroup$
                – Daniele Tampieri
                yesterday











              • $begingroup$
                @user8908459 Perhaps you could check my hypothesis is correct by looking at the output capability of the UART microcontroller outputs. If this is lower than the one available from the TSX0108, perhaps my hypothesis is correct.
                $endgroup$
                – Daniele Tampieri
                yesterday






              • 1




                $begingroup$
                Is it typical to send UART interfaces off-board? I generally think of RS-232/422 being more appropriate for this.
                $endgroup$
                – user8908459
                yesterday






              • 1




                $begingroup$
                Per you previous comment, I verified that the microcontroller pins source less current (25mA) than the TSX0108 (50mA)
                $endgroup$
                – user8908459
                yesterday















              1












              $begingroup$

              The level shifter is used not only to "shift" the logic levels of a signal, but also to lower the impedance of its source and increase its current drive capability in order to drive heavier loads without going out of specifications: in this case, the higher impedance output UART is sent to out the microcontroller board via the TXS0108 probably to rise its output drive capability.






              share|improve this answer









              $endgroup$












              • $begingroup$
                I have never seen another design where the UART is buffered. Do you think this is only necessary since the connection leaves the board and the external impedance is unknown?
                $endgroup$
                – user8908459
                yesterday










              • $begingroup$
                @user8908459 Yes, I think so: perhaps the designer(s) tried to make the UART output as more independent as possible from the unknown external impedance. From the datasheet I see that the absolute maximum rating of output current per output pin is $pm50mathrmmA$, which somewhat allows some resistance to overload.
                $endgroup$
                – Daniele Tampieri
                yesterday











              • $begingroup$
                @user8908459 Perhaps you could check my hypothesis is correct by looking at the output capability of the UART microcontroller outputs. If this is lower than the one available from the TSX0108, perhaps my hypothesis is correct.
                $endgroup$
                – Daniele Tampieri
                yesterday






              • 1




                $begingroup$
                Is it typical to send UART interfaces off-board? I generally think of RS-232/422 being more appropriate for this.
                $endgroup$
                – user8908459
                yesterday






              • 1




                $begingroup$
                Per you previous comment, I verified that the microcontroller pins source less current (25mA) than the TSX0108 (50mA)
                $endgroup$
                – user8908459
                yesterday













              1












              1








              1





              $begingroup$

              The level shifter is used not only to "shift" the logic levels of a signal, but also to lower the impedance of its source and increase its current drive capability in order to drive heavier loads without going out of specifications: in this case, the higher impedance output UART is sent to out the microcontroller board via the TXS0108 probably to rise its output drive capability.






              share|improve this answer









              $endgroup$



              The level shifter is used not only to "shift" the logic levels of a signal, but also to lower the impedance of its source and increase its current drive capability in order to drive heavier loads without going out of specifications: in this case, the higher impedance output UART is sent to out the microcontroller board via the TXS0108 probably to rise its output drive capability.







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered yesterday









              Daniele TampieriDaniele Tampieri

              1,1881715




              1,1881715











              • $begingroup$
                I have never seen another design where the UART is buffered. Do you think this is only necessary since the connection leaves the board and the external impedance is unknown?
                $endgroup$
                – user8908459
                yesterday










              • $begingroup$
                @user8908459 Yes, I think so: perhaps the designer(s) tried to make the UART output as more independent as possible from the unknown external impedance. From the datasheet I see that the absolute maximum rating of output current per output pin is $pm50mathrmmA$, which somewhat allows some resistance to overload.
                $endgroup$
                – Daniele Tampieri
                yesterday











              • $begingroup$
                @user8908459 Perhaps you could check my hypothesis is correct by looking at the output capability of the UART microcontroller outputs. If this is lower than the one available from the TSX0108, perhaps my hypothesis is correct.
                $endgroup$
                – Daniele Tampieri
                yesterday






              • 1




                $begingroup$
                Is it typical to send UART interfaces off-board? I generally think of RS-232/422 being more appropriate for this.
                $endgroup$
                – user8908459
                yesterday






              • 1




                $begingroup$
                Per you previous comment, I verified that the microcontroller pins source less current (25mA) than the TSX0108 (50mA)
                $endgroup$
                – user8908459
                yesterday
















              • $begingroup$
                I have never seen another design where the UART is buffered. Do you think this is only necessary since the connection leaves the board and the external impedance is unknown?
                $endgroup$
                – user8908459
                yesterday










              • $begingroup$
                @user8908459 Yes, I think so: perhaps the designer(s) tried to make the UART output as more independent as possible from the unknown external impedance. From the datasheet I see that the absolute maximum rating of output current per output pin is $pm50mathrmmA$, which somewhat allows some resistance to overload.
                $endgroup$
                – Daniele Tampieri
                yesterday











              • $begingroup$
                @user8908459 Perhaps you could check my hypothesis is correct by looking at the output capability of the UART microcontroller outputs. If this is lower than the one available from the TSX0108, perhaps my hypothesis is correct.
                $endgroup$
                – Daniele Tampieri
                yesterday






              • 1




                $begingroup$
                Is it typical to send UART interfaces off-board? I generally think of RS-232/422 being more appropriate for this.
                $endgroup$
                – user8908459
                yesterday






              • 1




                $begingroup$
                Per you previous comment, I verified that the microcontroller pins source less current (25mA) than the TSX0108 (50mA)
                $endgroup$
                – user8908459
                yesterday















              $begingroup$
              I have never seen another design where the UART is buffered. Do you think this is only necessary since the connection leaves the board and the external impedance is unknown?
              $endgroup$
              – user8908459
              yesterday




              $begingroup$
              I have never seen another design where the UART is buffered. Do you think this is only necessary since the connection leaves the board and the external impedance is unknown?
              $endgroup$
              – user8908459
              yesterday












              $begingroup$
              @user8908459 Yes, I think so: perhaps the designer(s) tried to make the UART output as more independent as possible from the unknown external impedance. From the datasheet I see that the absolute maximum rating of output current per output pin is $pm50mathrmmA$, which somewhat allows some resistance to overload.
              $endgroup$
              – Daniele Tampieri
              yesterday





              $begingroup$
              @user8908459 Yes, I think so: perhaps the designer(s) tried to make the UART output as more independent as possible from the unknown external impedance. From the datasheet I see that the absolute maximum rating of output current per output pin is $pm50mathrmmA$, which somewhat allows some resistance to overload.
              $endgroup$
              – Daniele Tampieri
              yesterday













              $begingroup$
              @user8908459 Perhaps you could check my hypothesis is correct by looking at the output capability of the UART microcontroller outputs. If this is lower than the one available from the TSX0108, perhaps my hypothesis is correct.
              $endgroup$
              – Daniele Tampieri
              yesterday




              $begingroup$
              @user8908459 Perhaps you could check my hypothesis is correct by looking at the output capability of the UART microcontroller outputs. If this is lower than the one available from the TSX0108, perhaps my hypothesis is correct.
              $endgroup$
              – Daniele Tampieri
              yesterday




              1




              1




              $begingroup$
              Is it typical to send UART interfaces off-board? I generally think of RS-232/422 being more appropriate for this.
              $endgroup$
              – user8908459
              yesterday




              $begingroup$
              Is it typical to send UART interfaces off-board? I generally think of RS-232/422 being more appropriate for this.
              $endgroup$
              – user8908459
              yesterday




              1




              1




              $begingroup$
              Per you previous comment, I verified that the microcontroller pins source less current (25mA) than the TSX0108 (50mA)
              $endgroup$
              – user8908459
              yesterday




              $begingroup$
              Per you previous comment, I verified that the microcontroller pins source less current (25mA) than the TSX0108 (50mA)
              $endgroup$
              – user8908459
              yesterday













              11












              $begingroup$

              On the full schematic there is an interesting note that starts:-




              due to the serial lines being able to back power the cpu...




              The STM32F407 MCU is only rated for an absolute maximum of 5mA injected current per pin (-5mA, +0mA on 5V tolerant pins), so if it was powered through a UART pin it could easily be damaged. The TXS0108 level shifter is rated for 50mA per input, so it is less likely to be damaged by eg. connecting an RS232 serial device (which might put out +-12V at 15mA or more).



              Another reason for buffering the serial port lines could be to make the MCU more tolerant of EMI. Autopilots are often used in harsh environments with nearby rf transmitters and high power brushless motors. An EMI induced glitch that caused the MCU to freeze or go crazy could crash the drone before it had time to recover.






              share|improve this answer









              $endgroup$

















                11












                $begingroup$

                On the full schematic there is an interesting note that starts:-




                due to the serial lines being able to back power the cpu...




                The STM32F407 MCU is only rated for an absolute maximum of 5mA injected current per pin (-5mA, +0mA on 5V tolerant pins), so if it was powered through a UART pin it could easily be damaged. The TXS0108 level shifter is rated for 50mA per input, so it is less likely to be damaged by eg. connecting an RS232 serial device (which might put out +-12V at 15mA or more).



                Another reason for buffering the serial port lines could be to make the MCU more tolerant of EMI. Autopilots are often used in harsh environments with nearby rf transmitters and high power brushless motors. An EMI induced glitch that caused the MCU to freeze or go crazy could crash the drone before it had time to recover.






                share|improve this answer









                $endgroup$















                  11












                  11








                  11





                  $begingroup$

                  On the full schematic there is an interesting note that starts:-




                  due to the serial lines being able to back power the cpu...




                  The STM32F407 MCU is only rated for an absolute maximum of 5mA injected current per pin (-5mA, +0mA on 5V tolerant pins), so if it was powered through a UART pin it could easily be damaged. The TXS0108 level shifter is rated for 50mA per input, so it is less likely to be damaged by eg. connecting an RS232 serial device (which might put out +-12V at 15mA or more).



                  Another reason for buffering the serial port lines could be to make the MCU more tolerant of EMI. Autopilots are often used in harsh environments with nearby rf transmitters and high power brushless motors. An EMI induced glitch that caused the MCU to freeze or go crazy could crash the drone before it had time to recover.






                  share|improve this answer









                  $endgroup$



                  On the full schematic there is an interesting note that starts:-




                  due to the serial lines being able to back power the cpu...




                  The STM32F407 MCU is only rated for an absolute maximum of 5mA injected current per pin (-5mA, +0mA on 5V tolerant pins), so if it was powered through a UART pin it could easily be damaged. The TXS0108 level shifter is rated for 50mA per input, so it is less likely to be damaged by eg. connecting an RS232 serial device (which might put out +-12V at 15mA or more).



                  Another reason for buffering the serial port lines could be to make the MCU more tolerant of EMI. Autopilots are often used in harsh environments with nearby rf transmitters and high power brushless motors. An EMI induced glitch that caused the MCU to freeze or go crazy could crash the drone before it had time to recover.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered yesterday









                  Bruce AbbottBruce Abbott

                  25.8k11934




                  25.8k11934





















                      1












                      $begingroup$

                      The only obvious thing (other than buffering) I see is that the I/O can be disabled via a control line Level_Shift Enable.



                      When that line is low the outputs are high-impedance, so it acts as a bidirectional tri-state buffer.






                      share|improve this answer











                      $endgroup$












                      • $begingroup$
                        On page 1, there is a circuit which permanently ties the Level_Shift_Enable line high, so there is no way to disable the output.
                        $endgroup$
                        – user8908459
                        yesterday






                      • 2




                        $begingroup$
                        It will provide buffering which might be in play here. The termination resistors imply they're worried about ringing.
                        $endgroup$
                        – Spehro Pefhany
                        yesterday










                      • $begingroup$
                        Oh, I think I see now. In this system, the serial devices may power up before the microcontroller. This chip will protect the inputs from becoming back-biased before power is applied to the microcontroller.
                        $endgroup$
                        – user8908459
                        yesterday










                      • $begingroup$
                        I looked for that first, but am not sure that's the reason- the inputs don't seem to permit inputs above the power supply (some chips do allow that).
                        $endgroup$
                        – Spehro Pefhany
                        yesterday










                      • $begingroup$
                        There are two voltages here: a 5V line and a 3.3V line. The 5V line powers the peripherals. It is also the input for the LDO (U5001) which provides 3.3V on the FMU-VDD_3V3 line. The 5V line comes up first meaning that the peripherals could be driving the IO pins before the microcontroller power supply is at full output.
                        $endgroup$
                        – user8908459
                        yesterday















                      1












                      $begingroup$

                      The only obvious thing (other than buffering) I see is that the I/O can be disabled via a control line Level_Shift Enable.



                      When that line is low the outputs are high-impedance, so it acts as a bidirectional tri-state buffer.






                      share|improve this answer











                      $endgroup$












                      • $begingroup$
                        On page 1, there is a circuit which permanently ties the Level_Shift_Enable line high, so there is no way to disable the output.
                        $endgroup$
                        – user8908459
                        yesterday






                      • 2




                        $begingroup$
                        It will provide buffering which might be in play here. The termination resistors imply they're worried about ringing.
                        $endgroup$
                        – Spehro Pefhany
                        yesterday










                      • $begingroup$
                        Oh, I think I see now. In this system, the serial devices may power up before the microcontroller. This chip will protect the inputs from becoming back-biased before power is applied to the microcontroller.
                        $endgroup$
                        – user8908459
                        yesterday










                      • $begingroup$
                        I looked for that first, but am not sure that's the reason- the inputs don't seem to permit inputs above the power supply (some chips do allow that).
                        $endgroup$
                        – Spehro Pefhany
                        yesterday










                      • $begingroup$
                        There are two voltages here: a 5V line and a 3.3V line. The 5V line powers the peripherals. It is also the input for the LDO (U5001) which provides 3.3V on the FMU-VDD_3V3 line. The 5V line comes up first meaning that the peripherals could be driving the IO pins before the microcontroller power supply is at full output.
                        $endgroup$
                        – user8908459
                        yesterday













                      1












                      1








                      1





                      $begingroup$

                      The only obvious thing (other than buffering) I see is that the I/O can be disabled via a control line Level_Shift Enable.



                      When that line is low the outputs are high-impedance, so it acts as a bidirectional tri-state buffer.






                      share|improve this answer











                      $endgroup$



                      The only obvious thing (other than buffering) I see is that the I/O can be disabled via a control line Level_Shift Enable.



                      When that line is low the outputs are high-impedance, so it acts as a bidirectional tri-state buffer.







                      share|improve this answer














                      share|improve this answer



                      share|improve this answer








                      edited yesterday

























                      answered yesterday









                      Spehro PefhanySpehro Pefhany

                      212k5162428




                      212k5162428











                      • $begingroup$
                        On page 1, there is a circuit which permanently ties the Level_Shift_Enable line high, so there is no way to disable the output.
                        $endgroup$
                        – user8908459
                        yesterday






                      • 2




                        $begingroup$
                        It will provide buffering which might be in play here. The termination resistors imply they're worried about ringing.
                        $endgroup$
                        – Spehro Pefhany
                        yesterday










                      • $begingroup$
                        Oh, I think I see now. In this system, the serial devices may power up before the microcontroller. This chip will protect the inputs from becoming back-biased before power is applied to the microcontroller.
                        $endgroup$
                        – user8908459
                        yesterday










                      • $begingroup$
                        I looked for that first, but am not sure that's the reason- the inputs don't seem to permit inputs above the power supply (some chips do allow that).
                        $endgroup$
                        – Spehro Pefhany
                        yesterday










                      • $begingroup$
                        There are two voltages here: a 5V line and a 3.3V line. The 5V line powers the peripherals. It is also the input for the LDO (U5001) which provides 3.3V on the FMU-VDD_3V3 line. The 5V line comes up first meaning that the peripherals could be driving the IO pins before the microcontroller power supply is at full output.
                        $endgroup$
                        – user8908459
                        yesterday
















                      • $begingroup$
                        On page 1, there is a circuit which permanently ties the Level_Shift_Enable line high, so there is no way to disable the output.
                        $endgroup$
                        – user8908459
                        yesterday






                      • 2




                        $begingroup$
                        It will provide buffering which might be in play here. The termination resistors imply they're worried about ringing.
                        $endgroup$
                        – Spehro Pefhany
                        yesterday










                      • $begingroup$
                        Oh, I think I see now. In this system, the serial devices may power up before the microcontroller. This chip will protect the inputs from becoming back-biased before power is applied to the microcontroller.
                        $endgroup$
                        – user8908459
                        yesterday










                      • $begingroup$
                        I looked for that first, but am not sure that's the reason- the inputs don't seem to permit inputs above the power supply (some chips do allow that).
                        $endgroup$
                        – Spehro Pefhany
                        yesterday










                      • $begingroup$
                        There are two voltages here: a 5V line and a 3.3V line. The 5V line powers the peripherals. It is also the input for the LDO (U5001) which provides 3.3V on the FMU-VDD_3V3 line. The 5V line comes up first meaning that the peripherals could be driving the IO pins before the microcontroller power supply is at full output.
                        $endgroup$
                        – user8908459
                        yesterday















                      $begingroup$
                      On page 1, there is a circuit which permanently ties the Level_Shift_Enable line high, so there is no way to disable the output.
                      $endgroup$
                      – user8908459
                      yesterday




                      $begingroup$
                      On page 1, there is a circuit which permanently ties the Level_Shift_Enable line high, so there is no way to disable the output.
                      $endgroup$
                      – user8908459
                      yesterday




                      2




                      2




                      $begingroup$
                      It will provide buffering which might be in play here. The termination resistors imply they're worried about ringing.
                      $endgroup$
                      – Spehro Pefhany
                      yesterday




                      $begingroup$
                      It will provide buffering which might be in play here. The termination resistors imply they're worried about ringing.
                      $endgroup$
                      – Spehro Pefhany
                      yesterday












                      $begingroup$
                      Oh, I think I see now. In this system, the serial devices may power up before the microcontroller. This chip will protect the inputs from becoming back-biased before power is applied to the microcontroller.
                      $endgroup$
                      – user8908459
                      yesterday




                      $begingroup$
                      Oh, I think I see now. In this system, the serial devices may power up before the microcontroller. This chip will protect the inputs from becoming back-biased before power is applied to the microcontroller.
                      $endgroup$
                      – user8908459
                      yesterday












                      $begingroup$
                      I looked for that first, but am not sure that's the reason- the inputs don't seem to permit inputs above the power supply (some chips do allow that).
                      $endgroup$
                      – Spehro Pefhany
                      yesterday




                      $begingroup$
                      I looked for that first, but am not sure that's the reason- the inputs don't seem to permit inputs above the power supply (some chips do allow that).
                      $endgroup$
                      – Spehro Pefhany
                      yesterday












                      $begingroup$
                      There are two voltages here: a 5V line and a 3.3V line. The 5V line powers the peripherals. It is also the input for the LDO (U5001) which provides 3.3V on the FMU-VDD_3V3 line. The 5V line comes up first meaning that the peripherals could be driving the IO pins before the microcontroller power supply is at full output.
                      $endgroup$
                      – user8908459
                      yesterday




                      $begingroup$
                      There are two voltages here: a 5V line and a 3.3V line. The 5V line powers the peripherals. It is also the input for the LDO (U5001) which provides 3.3V on the FMU-VDD_3V3 line. The 5V line comes up first meaning that the peripherals could be driving the IO pins before the microcontroller power supply is at full output.
                      $endgroup$
                      – user8908459
                      yesterday











                      1












                      $begingroup$

                      The other answers do not make sense. The output impedance of a microcontroller pin is about 30 ohms: perfectly capable of driving the 120 ohm series resistors.
                      Also, I have not seen a microcontroller where you don't have tristate control in the chip.
                      I suspect historical reasons: in the past it was level shift to 5V,which has evolved to levelshift to 3.3V, but to reduce impact on the layout the levelshifter was left in place.






                      share|improve this answer









                      $endgroup$

















                        1












                        $begingroup$

                        The other answers do not make sense. The output impedance of a microcontroller pin is about 30 ohms: perfectly capable of driving the 120 ohm series resistors.
                        Also, I have not seen a microcontroller where you don't have tristate control in the chip.
                        I suspect historical reasons: in the past it was level shift to 5V,which has evolved to levelshift to 3.3V, but to reduce impact on the layout the levelshifter was left in place.






                        share|improve this answer









                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          The other answers do not make sense. The output impedance of a microcontroller pin is about 30 ohms: perfectly capable of driving the 120 ohm series resistors.
                          Also, I have not seen a microcontroller where you don't have tristate control in the chip.
                          I suspect historical reasons: in the past it was level shift to 5V,which has evolved to levelshift to 3.3V, but to reduce impact on the layout the levelshifter was left in place.






                          share|improve this answer









                          $endgroup$



                          The other answers do not make sense. The output impedance of a microcontroller pin is about 30 ohms: perfectly capable of driving the 120 ohm series resistors.
                          Also, I have not seen a microcontroller where you don't have tristate control in the chip.
                          I suspect historical reasons: in the past it was level shift to 5V,which has evolved to levelshift to 3.3V, but to reduce impact on the layout the levelshifter was left in place.







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered yesterday









                          rewrew

                          1654




                          1654



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Electrical Engineering Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f429927%2fpurpose-of-level-shifter-with-same-in-and-out-voltages%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                              Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                              Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020