How to find the nth term in the following sequence: $1,1,2,2,4,4,8,8,16,16$ The Next CEO of Stack OverflowHow to interpret the OEIS function for the “even fractal sequence” A103391 (1, 2, 2, 3, 2, 4, 3, 5, …)What will be nth term of the following sequence?How to find the nth term of this sequence?Number of possible ordered sequencesFind nth term of sequenceHow can i find the decimal values with a list of integers?Given a sequence find nth termFind nth term for below sequenceProve $lim_ntoinftyU_n = 1$ given $0 lt U_n - 1over U_nlt 1over n$ and $U_n>0$How to find the nth term in quadratic sequence?

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

Are British MPs missing the point, with these 'Indicative Votes'?

What did the word "leisure" mean in late 18th Century usage?

Why was Sir Cadogan fired?

A hang glider, sudden unexpected lift to 25,000 feet altitude, what could do this?

What happens if you break a law in another country outside of that country?

Creating a script with console commands

Direct Implications Between USA and UK in Event of No-Deal Brexit

Is a linearly independent set whose span is dense a Schauder basis?

How to find if SQL server backup is encrypted with TDE without restoring the backup

How can I separate the number from the unit in argument?

Car headlights in a world without electricity

Man transported from Alternate World into ours by a Neutrino Detector

How badly should I try to prevent a user from XSSing themselves?

Does the Idaho Potato Commission associate potato skins with healthy eating?

Another proof that dividing by 0 does not exist -- is it right?

Is it possible to create a QR code using text?

Can you teleport closer to a creature you are Frightened of?

logical reads on global temp table, but not on session-level temp table

Can this transistor (2N2222) take 6 V on emitter-base? Am I reading the datasheet incorrectly?

Is the offspring between a demon and a celestial possible? If so what is it called and is it in a book somewhere?

Compensation for working overtime on Saturdays

Could a dragon use its wings to swim?

Why can't we say "I have been having a dog"?



How to find the nth term in the following sequence: $1,1,2,2,4,4,8,8,16,16$



The Next CEO of Stack OverflowHow to interpret the OEIS function for the “even fractal sequence” A103391 (1, 2, 2, 3, 2, 4, 3, 5, …)What will be nth term of the following sequence?How to find the nth term of this sequence?Number of possible ordered sequencesFind nth term of sequenceHow can i find the decimal values with a list of integers?Given a sequence find nth termFind nth term for below sequenceProve $lim_ntoinftyU_n = 1$ given $0 lt U_n - 1over U_nlt 1over n$ and $U_n>0$How to find the nth term in quadratic sequence?










4












$begingroup$


I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.



I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.



Any help would be highly appreciated.










share|cite|improve this question









New contributor




Anonymous is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    How about using the floor function?
    $endgroup$
    – John. P
    yesterday
















4












$begingroup$


I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.



I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.



Any help would be highly appreciated.










share|cite|improve this question









New contributor




Anonymous is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    How about using the floor function?
    $endgroup$
    – John. P
    yesterday














4












4








4


1



$begingroup$


I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.



I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.



Any help would be highly appreciated.










share|cite|improve this question









New contributor




Anonymous is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.



I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.



Any help would be highly appreciated.







sequences-and-series






share|cite|improve this question









New contributor




Anonymous is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Anonymous is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited yesterday









YuiTo Cheng

2,1863937




2,1863937






New contributor




Anonymous is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









AnonymousAnonymous

232




232




New contributor




Anonymous is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Anonymous is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Anonymous is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    How about using the floor function?
    $endgroup$
    – John. P
    yesterday













  • 1




    $begingroup$
    How about using the floor function?
    $endgroup$
    – John. P
    yesterday








1




1




$begingroup$
How about using the floor function?
$endgroup$
– John. P
yesterday





$begingroup$
How about using the floor function?
$endgroup$
– John. P
yesterday











3 Answers
3






active

oldest

votes


















6












$begingroup$

These are just powers of two. So: $2^lfloor n / 2rfloor$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
    $endgroup$
    – Anonymous
    yesterday






  • 1




    $begingroup$
    This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
    $endgroup$
    – Flowers
    yesterday


















3












$begingroup$

Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
$$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
$$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.




    So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$







    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Anonymous is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169109%2fhow-to-find-the-nth-term-in-the-following-sequence-1-1-2-2-4-4-8-8-16-16%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      These are just powers of two. So: $2^lfloor n / 2rfloor$






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
        $endgroup$
        – Anonymous
        yesterday






      • 1




        $begingroup$
        This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
        $endgroup$
        – Flowers
        yesterday















      6












      $begingroup$

      These are just powers of two. So: $2^lfloor n / 2rfloor$






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
        $endgroup$
        – Anonymous
        yesterday






      • 1




        $begingroup$
        This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
        $endgroup$
        – Flowers
        yesterday













      6












      6








      6





      $begingroup$

      These are just powers of two. So: $2^lfloor n / 2rfloor$






      share|cite|improve this answer









      $endgroup$



      These are just powers of two. So: $2^lfloor n / 2rfloor$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered yesterday









      FlowersFlowers

      673410




      673410











      • $begingroup$
        I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
        $endgroup$
        – Anonymous
        yesterday






      • 1




        $begingroup$
        This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
        $endgroup$
        – Flowers
        yesterday
















      • $begingroup$
        I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
        $endgroup$
        – Anonymous
        yesterday






      • 1




        $begingroup$
        This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
        $endgroup$
        – Flowers
        yesterday















      $begingroup$
      I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
      $endgroup$
      – Anonymous
      yesterday




      $begingroup$
      I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
      $endgroup$
      – Anonymous
      yesterday




      1




      1




      $begingroup$
      This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
      $endgroup$
      – Flowers
      yesterday




      $begingroup$
      This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
      $endgroup$
      – Flowers
      yesterday











      3












      $begingroup$

      Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
      $$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
      Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
      $$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
      Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.






      share|cite|improve this answer









      $endgroup$

















        3












        $begingroup$

        Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
        $$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
        Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
        $$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
        Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.






        share|cite|improve this answer









        $endgroup$















          3












          3








          3





          $begingroup$

          Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
          $$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
          Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
          $$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
          Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.






          share|cite|improve this answer









          $endgroup$



          Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
          $$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
          Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
          $$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
          Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          TravisTravis

          63.8k769151




          63.8k769151





















              1












              $begingroup$

              The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.




              So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$







              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.




                So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$







                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.




                  So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$







                  share|cite|improve this answer









                  $endgroup$



                  The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.




                  So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$








                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  TravisTravis

                  63.8k769151




                  63.8k769151




















                      Anonymous is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Anonymous is a new contributor. Be nice, and check out our Code of Conduct.












                      Anonymous is a new contributor. Be nice, and check out our Code of Conduct.











                      Anonymous is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169109%2fhow-to-find-the-nth-term-in-the-following-sequence-1-1-2-2-4-4-8-8-16-16%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Wikipedia:Vital articles Мазмуну Biography - Өмүр баян Philosophy and psychology - Философия жана психология Religion - Дин Social sciences - Коомдук илимдер Language and literature - Тил жана адабият Science - Илим Technology - Технология Arts and recreation - Искусство жана эс алуу History and geography - Тарых жана география Навигация менюсу

                      Bruxelas-Capital Índice Historia | Composición | Situación lingüística | Clima | Cidades irmandadas | Notas | Véxase tamén | Menú de navegacióneO uso das linguas en Bruxelas e a situación do neerlandés"Rexión de Bruxelas Capital"o orixinalSitio da rexiónPáxina de Bruselas no sitio da Oficina de Promoción Turística de Valonia e BruxelasMapa Interactivo da Rexión de Bruxelas-CapitaleeWorldCat332144929079854441105155190212ID28008674080552-90000 0001 0666 3698n94104302ID540940339365017018237

                      What should I write in an apology letter, since I have decided not to join a company after accepting an offer letterShould I keep looking after accepting a job offer?What should I do when I've been verbally told I would get an offer letter, but still haven't gotten one after 4 weeks?Do I accept an offer from a company that I am not likely to join?New job hasn't confirmed starting date and I want to give current employer as much notice as possibleHow should I address my manager in my resignation letter?HR delayed background verification, now jobless as resignedNo email communication after accepting a formal written offer. How should I phrase the call?What should I do if after receiving a verbal offer letter I am informed that my written job offer is put on hold due to some internal issues?Should I inform the current employer that I am about to resign within 1-2 weeks since I have signed the offer letter and waiting for visa?What company will do, if I send their offer letter to another company