How to find the nth term in the following sequence: $1,1,2,2,4,4,8,8,16,16$ The Next CEO of Stack OverflowHow to interpret the OEIS function for the “even fractal sequence” A103391 (1, 2, 2, 3, 2, 4, 3, 5, …)What will be nth term of the following sequence?How to find the nth term of this sequence?Number of possible ordered sequencesFind nth term of sequenceHow can i find the decimal values with a list of integers?Given a sequence find nth termFind nth term for below sequenceProve $lim_ntoinftyU_n = 1$ given $0 lt U_n - 1over U_nlt 1over n$ and $U_n>0$How to find the nth term in quadratic sequence?
Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?
Are British MPs missing the point, with these 'Indicative Votes'?
What did the word "leisure" mean in late 18th Century usage?
Why was Sir Cadogan fired?
A hang glider, sudden unexpected lift to 25,000 feet altitude, what could do this?
What happens if you break a law in another country outside of that country?
Creating a script with console commands
Direct Implications Between USA and UK in Event of No-Deal Brexit
Is a linearly independent set whose span is dense a Schauder basis?
How to find if SQL server backup is encrypted with TDE without restoring the backup
How can I separate the number from the unit in argument?
Car headlights in a world without electricity
Man transported from Alternate World into ours by a Neutrino Detector
How badly should I try to prevent a user from XSSing themselves?
Does the Idaho Potato Commission associate potato skins with healthy eating?
Another proof that dividing by 0 does not exist -- is it right?
Is it possible to create a QR code using text?
Can you teleport closer to a creature you are Frightened of?
logical reads on global temp table, but not on session-level temp table
Can this transistor (2N2222) take 6 V on emitter-base? Am I reading the datasheet incorrectly?
Is the offspring between a demon and a celestial possible? If so what is it called and is it in a book somewhere?
Compensation for working overtime on Saturdays
Could a dragon use its wings to swim?
Why can't we say "I have been having a dog"?
How to find the nth term in the following sequence: $1,1,2,2,4,4,8,8,16,16$
The Next CEO of Stack OverflowHow to interpret the OEIS function for the “even fractal sequence” A103391 (1, 2, 2, 3, 2, 4, 3, 5, …)What will be nth term of the following sequence?How to find the nth term of this sequence?Number of possible ordered sequencesFind nth term of sequenceHow can i find the decimal values with a list of integers?Given a sequence find nth termFind nth term for below sequenceProve $lim_ntoinftyU_n = 1$ given $0 lt U_n - 1over U_nlt 1over n$ and $U_n>0$How to find the nth term in quadratic sequence?
$begingroup$
I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.
I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.
Any help would be highly appreciated.
sequences-and-series
New contributor
$endgroup$
add a comment |
$begingroup$
I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.
I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.
Any help would be highly appreciated.
sequences-and-series
New contributor
$endgroup$
1
$begingroup$
How about using the floor function?
$endgroup$
– John. P
yesterday
add a comment |
$begingroup$
I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.
I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.
Any help would be highly appreciated.
sequences-and-series
New contributor
$endgroup$
I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.
I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.
Any help would be highly appreciated.
sequences-and-series
sequences-and-series
New contributor
New contributor
edited yesterday
YuiTo Cheng
2,1863937
2,1863937
New contributor
asked yesterday
AnonymousAnonymous
232
232
New contributor
New contributor
1
$begingroup$
How about using the floor function?
$endgroup$
– John. P
yesterday
add a comment |
1
$begingroup$
How about using the floor function?
$endgroup$
– John. P
yesterday
1
1
$begingroup$
How about using the floor function?
$endgroup$
– John. P
yesterday
$begingroup$
How about using the floor function?
$endgroup$
– John. P
yesterday
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
These are just powers of two. So: $2^lfloor n / 2rfloor$
$endgroup$
$begingroup$
I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
$endgroup$
– Anonymous
yesterday
1
$begingroup$
This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
$endgroup$
– Flowers
yesterday
add a comment |
$begingroup$
Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
$$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
$$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.
$endgroup$
add a comment |
$begingroup$
The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.
So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Anonymous is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169109%2fhow-to-find-the-nth-term-in-the-following-sequence-1-1-2-2-4-4-8-8-16-16%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
These are just powers of two. So: $2^lfloor n / 2rfloor$
$endgroup$
$begingroup$
I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
$endgroup$
– Anonymous
yesterday
1
$begingroup$
This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
$endgroup$
– Flowers
yesterday
add a comment |
$begingroup$
These are just powers of two. So: $2^lfloor n / 2rfloor$
$endgroup$
$begingroup$
I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
$endgroup$
– Anonymous
yesterday
1
$begingroup$
This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
$endgroup$
– Flowers
yesterday
add a comment |
$begingroup$
These are just powers of two. So: $2^lfloor n / 2rfloor$
$endgroup$
These are just powers of two. So: $2^lfloor n / 2rfloor$
answered yesterday
FlowersFlowers
673410
673410
$begingroup$
I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
$endgroup$
– Anonymous
yesterday
1
$begingroup$
This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
$endgroup$
– Flowers
yesterday
add a comment |
$begingroup$
I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
$endgroup$
– Anonymous
yesterday
1
$begingroup$
This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
$endgroup$
– Flowers
yesterday
$begingroup$
I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
$endgroup$
– Anonymous
yesterday
$begingroup$
I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
$endgroup$
– Anonymous
yesterday
1
1
$begingroup$
This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
$endgroup$
– Flowers
yesterday
$begingroup$
This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
$endgroup$
– Flowers
yesterday
add a comment |
$begingroup$
Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
$$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
$$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.
$endgroup$
add a comment |
$begingroup$
Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
$$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
$$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.
$endgroup$
add a comment |
$begingroup$
Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
$$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
$$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.
$endgroup$
Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
$$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
$$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.
answered yesterday
TravisTravis
63.8k769151
63.8k769151
add a comment |
add a comment |
$begingroup$
The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.
So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$
$endgroup$
add a comment |
$begingroup$
The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.
So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$
$endgroup$
add a comment |
$begingroup$
The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.
So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$
$endgroup$
The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.
So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$
answered yesterday
TravisTravis
63.8k769151
63.8k769151
add a comment |
add a comment |
Anonymous is a new contributor. Be nice, and check out our Code of Conduct.
Anonymous is a new contributor. Be nice, and check out our Code of Conduct.
Anonymous is a new contributor. Be nice, and check out our Code of Conduct.
Anonymous is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169109%2fhow-to-find-the-nth-term-in-the-following-sequence-1-1-2-2-4-4-8-8-16-16%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
How about using the floor function?
$endgroup$
– John. P
yesterday